
Creating SSI Clusters Using UML HOWTO

Brian J. Watson

           Brian.J.Watson@hp.com

Revision History

Revision 1.04 2002−05−29 Revised by: bjw

LDP review

Revision 1.03 2002−05−23 Revised by: bpm

LDP review

Revision 1.02 2002−05−13 Revised by: bjw

Fixed minor typos and errors

Revision 1.00 2002−05−09 Revised by: bjw

Initial release

This is a description of how to create a Single System Image (SSI)  cluster of virtual User−Mode Linux
(UML) machines. After explaining  how to use the pre−built SSI/UML binaries, this document demonstrates
what an SSI cluster can do. Then it shows more advanced users  how to build their own SSI/UML kernels,
ramdisks and root images.  Following that, it provides an overview of how to move to a  hardware−based SSI
cluster. It concludes with a set of links  and an invitation to contribute to the SSI Clustering project. 



Table of Contents
1. Introduction.....................................................................................................................................................1

1.1. Overview of SSI Clustering..............................................................................................................1
1.1.1. Cluster Infrastructure (CI)................................................................................................1
1.1.2. Global File System (GFS).................................................................................................1
1.1.3. Keepalive/Spawndaemon..................................................................................................1
1.1.4. Linux Virtual Server (LVS)..............................................................................................2
1.1.5. Mosix Load−Leveler........................................................................................................2

1.2. Overview of UML.............................................................................................................................2
1.3. Intended Audience............................................................................................................................2
1.4. System Requirements.......................................................................................................................3
1.5. New Versions....................................................................................................................................3
1.6. Feedback...........................................................................................................................................4
1.7. Copyright Information......................................................................................................................4
1.8. Disclaimer.........................................................................................................................................4

2. Getting Started................................................................................................................................................5
2.1. Root Image........................................................................................................................................5
2.2. UML Utilities....................................................................................................................................5
2.3. SSI/UML Utilities.............................................................................................................................5
2.4. Booting the Cluster...........................................................................................................................6
2.5. Booting an Individual Node..............................................................................................................6
2.6. Crashing an Individual Node............................................................................................................6
2.7. Shutting Down the Cluster................................................................................................................7

3. Playing Around...............................................................................................................................................8
3.1. Process Movement, Inheriting Open Files and Devices...................................................................8
3.2. Clusterwide PIDs, Distributed Process Relationships  and Access, Clusterwide Job Control 
and Single Root........................................................................................................................................9
3.3. Clusterwide FIFOs............................................................................................................................9
3.4. Clusterwide Device Naming and Access........................................................................................10

4. Building a Kernel and Ramdisk..................................................................................................................11
4.1. Getting SSI Source..........................................................................................................................11

4.1.1. Official Release...............................................................................................................11
4.1.2. CVS Checkout................................................................................................................11

4.2. Getting the Base Kernel..................................................................................................................12
4.3. Applying SSI Kernel Code.............................................................................................................12

4.3.1. Official Release...............................................................................................................12
4.3.2. CVS Checkout................................................................................................................13

4.4. Building the Kernel.........................................................................................................................13
4.5. Adding GFS Support to the Host....................................................................................................13
4.6. Installing the Kernel........................................................................................................................14
4.7. Building GFS for UML...................................................................................................................15
4.8. Building the Ramdisk.....................................................................................................................15
4.9. Booting the Cluster.........................................................................................................................16

5. Building a Root Image..................................................................................................................................17
5.1. Base Root Image.............................................................................................................................17

Creating SSI Clusters Using UML HOWTO

i



Table of Contents
5.2. GFS Root Image.............................................................................................................................17
5.3. Getting Cluster Tools Source..........................................................................................................19

5.3.1. Official Release...............................................................................................................19
5.3.2. CVS Checkout................................................................................................................19

5.4. Building and Installing Cluster Tools.............................................................................................19
5.5. Installing Kernel Modules...............................................................................................................20
5.6. Configuring the Root......................................................................................................................20
5.7. Unmounting the Root Image...........................................................................................................20
5.8. Distributions Other Than Red Hat..................................................................................................21

6. Moving to a Hardware−Based Cluster.......................................................................................................22
6.1. Requirements..................................................................................................................................22
6.2. Resources........................................................................................................................................23

7. Further Information .....................................................................................................................................24
7.1. SSI Clusters.....................................................................................................................................24
7.2. CI Clusters......................................................................................................................................24
7.3. GFS.................................................................................................................................................24
7.4. UML................................................................................................................................................24
7.5. Other Clustering Projects................................................................................................................25

8. Contributing ..................................................................................................................................................26
8.1. Testing............................................................................................................................................26
8.2. Documentation................................................................................................................................26
8.3. Debugging.......................................................................................................................................26
8.4. Adding New Features.....................................................................................................................26

9. Concluding Remarks....................................................................................................................................27

Creating SSI Clusters Using UML HOWTO

ii



1. Introduction
An SSI cluster is a collection of computers that work together as if  they are a single highly−available
supercomputer. There are at least  three reasons to create an SSI cluster of virtual UML machines. 

Allow new users to easily experiment with SSI clustering,  before investing time and hardware
resources into creating  a hardware−based cluster. 

• 

Provide a friendly testing and debugging environment  for SSI developers. • 
Let developers test hundred−node clusters with only  ten or so physical machines. • 

1.1. Overview of SSI Clustering

The raison d'être of the  SSI Clustering project is to provide  a full, highly available SSI environment for
Linux.  Goals for this project include availability, scalability and  manageability, using standard servers.
Technology pieces include: membership, single root and single init,  single process space and process
migration, load leveling, single  IPC, device and networking space, and single management space. 

The SSI project was seeded with HP's NonStop Clusters for  UnixWare (NSC) technology.  It also leverages
other open source technologies, such as Cluster  Infrastructure (CI), Global File System (GFS),
keepalive/spawndaemon,  Linux Virtual Server (LVS), and the Mosix load−leveler, to create the best
general−purpose clustering environment on Linux. 

1.1.1. Cluster Infrastructure (CI)

The CI project is developing a common infrastructure  for Linux clustering by extending the  Cluster
Membership Subsystem (CLMS) and  Internode Communication Subsystem (ICS) from HP's  NonStop
Clusters for Unixware (NSC) code base. 

1.1.2. Global File System (GFS)

GFS is a parallel physical file system for Linux. It allows multiple  computers to simultaneously share a single
drive.  The SSI Clustering project uses GFS for its single, shared root.  GFS was originally developed and
open−sourced by Sistina Software.  Later they decided to close the GFS source, which prompted the creation
of the OpenGFS project to maintain a version of GFS that is still under the GPL. 

1.1.3. Keepalive/Spawndaemon

keepalive is a process monitoring  and restart daemon that was ported  from HP's Non−Stop Clusters for
UnixWare (NSC). It offers  significantly more flexibility than the respawn feature of init. 

spawndaemon provides a command−line  interface for keepalive. It's used to control which  processes
keepalive monitors, along with  various other parameters related to monitoring and restart. 

1. Introduction 1

http://ssic-linux.sf.net/
http://ci-linux.sf.net/
http://www.sistina.com/products_gfs.htm
http://www.opengfs.org/
http://ci-linux.sourceforge.net/keepalive.shtml
http://ci-linux.sourceforge.net/spawndaemon.shtml


Keepalive/spawndaemon is currently incompatible with the GFS shared  root. keepalive makes use of shared
writable  memory mapped files, which OpenGFS does not yet support. It's  only mentioned for the sake of
completeness. 

1.1.4. Linux Virtual Server (LVS)

LVS allows you to build highly scalable and highly available  network services over a set of cluster nodes.
LVS offers various  ways to load−balance connections (e.g., round−robin,  least connection, etc.) across the
cluster. The whole cluster  is known to the outside world by a single IP address. 

The SSI project will become more tightly integrated with LVS in the  future. An advantage will be greatly
reduced administrative overhead,  because SSI kernels have the information necessary to automate most  LVS
configuration. Another advantage will be that the SSI environment  allows much tighter coordination among
server nodes. 

LVS support is turned off in the current binary release of SSI/UML.  To experiment with it you must build
your own kernel as described in  Section 4. 

1.1.5. Mosix Load−Leveler

The Mosix load−leveler provides automatic load−balancing within a cluster.  Using the Mosix algorithms, the
load of each node is calculated and  compared to the loads of the other nodes in the cluster. If it's  determined
that a node is overloaded, the load−leveler chooses a  process to migrate to the best underloaded node. 

Only the load−leveling algorithms have been taken from Mosix. The  SSI Clustering project is using its own
process migration model,  membership mechanism and information sharing scheme. 

The Mosix load−leveler is turned off in the current binary release  of SSI/UML.  To experiment with it you
must build your own kernel as described in  Section 4. 

1.2. Overview of UML

User−Mode Linux (UML)  allows you to run one or more virtual Linux machines on a host Linux  system. It
includes virtual block, network, and serial devices to  provide an environment that is almost as full−featured
as a  hardware−based machine. 

1.3. Intended Audience

The following are various cluster types found in use today. If you  use or intend to use one of these cluster
types, you may want to  consider SSI clustering as an alternative or addition. 

High performance (HP) clusters, typified by Beowulf clusters,  are constructed to run parallel
programs (weather simulations,  data mining, etc.). 

• 

Load−leveling clusters, typified by Mosix, are constructed  to allow a user on one node to spread his• 

Creating SSI Clusters Using UML HOWTO

1.1.4. Linux Virtual Server (LVS) 2

http://www.LinuxVirtualServer.org/
http://openmosix.sourceforge.net/
http://user-mode-linux.sf.net/
http://www.beowulf.org/
http://openmosix.sourceforge.net/


workload  transparently across all nodes in the cluster. This can be  very useful for compute intensive,
long running jobs that  aren't massively parallel. 
Web−service clusters, typified by the Linux Virtual  Server (LVS) project and Piranha,  do a different
kind  of load leveling. Incoming web service requests are  load−leveled by a front end system across a
set of  standard servers. 

• 

Storage clusters, typified by Sistina's  GFS and the OpenGFS project, consist of nodes which supply
parallel,  coherent, and highly available access to filesystem data. 

• 

Database clusters, typified by Oracle 9I RAC (formerly Oracle Parallel Server),  consist of nodes
which supply  parallel, coherent, and HA access to a database. 

• 

High Availability clusters, typified by Lifekeeper, FailSafe and Heartbeat, are also often known as
failover  clusters. Resources, most importantly applications and  nodes, are monitored. When a failure
is detected, scripts  are used to fail over IP addresses, disks, and filesystems,  as well as restarting
applications. 

• 

For more information about how SSI clustering compares to the  cluster types above, read Bruce Walker's
Introduction to Single System Image Clustering. 

1.4. System Requirements

To create an SSI cluster of virtual UML machines,  you need an Intel x86−based computer running any Linux
distribution with  a 2.2.15 or later kernel. About two gigabytes of available  hard drive space are needed for
each node's swap space, the original disk  image, and its working copy. 

A reasonably fast processor and sufficient memory are necessary  to ensure good performance while running
several virtual machines.  The systems I've used so far have not performed well. 

One was a 400 MHz PII with 192 MB of memory running Sawfish as its  window manager. Bringing up a
three node cluster was quite slow  and sometimes failed, maybe due to problems with memory pressure  in
either UML or the UML port of SSI. 

Another was a two−way 200 MHz Pentium Pro with 192 MB of memory  that used a second machine as its X
server.  A three node cluster booted quicker and failed less often,  but performance was still less than
satisfactory. 

More testing is needed to know what the appropriate system requirements  are. User feedback would be most
useful, and can be sent to  <ssic−linux−devel@lists.sf.net>. 

1.5. New Versions

The latest version of this HOWTO will always be made available on  the SSI project website,  in a variety of
formats: 

HTML• 
PDF• 
SGML  source• 

Creating SSI Clusters Using UML HOWTO

1.4. System Requirements 3

http://www.LinuxVirtualServer.org/
http://sources.redhat.com/piranha/
http://www.sistina.com/products_gfs.htm
http://www.opengfs.org/
http://oracle.com/ip/index.html?rac_home.html
http://www.steeleye.com/products/linux/
http://oss.sgi.com/projects/failsafe/
http://linux-ha.org/heartbeat/
http://ssic-linux.sf.net/ssi-intro-v4.pdf
mailto:ssic-linux-devel@lists.sf.net
http://ssic-linux.sf.net/
http://ssic-linux.sf.net/ssiuml-howto/
http://ssic-linux.sf.net/ssiuml-howto.pdf
http://ssic-linux.sf.net/ssiuml-howto.sgml


1.6. Feedback

Feedback is most certainly welcome for this document. Please  send your additions, comments and criticisms
to the following  email address: <ssic−linux−devel@lists.sf.net>. 

1.7. Copyright Information

This document is copyrighted © 2002 Hewlett−Packard Company and is  distributed under the terms of the
Linux Documentation Project  (LDP) license, stated below. 

Unless otherwise stated, Linux HOWTO documents are  copyrighted by their respective authors. Linux
HOWTO documents may  be reproduced and distributed in whole or in part, in any medium  physical or
electronic, as long as this copyright notice is  retained on all copies. Commercial redistribution is allowed and
encouraged; however, the author would like to be notified of any  such distributions. 

All translations, derivative works, or aggregate works  incorporating any Linux HOWTO documents must be
covered under this  copyright notice. That is, you may not produce a derivative work  from a HOWTO and
impose additional restrictions on its  distribution. Exceptions to these rules may be granted under  certain
conditions; please contact the Linux HOWTO coordinator at  the address given below. 

In short, we wish to promote dissemination of this  information through as many channels as possible.
However, we do  wish to retain copyright on the HOWTO documents, and would like to  be notified of any
plans to redistribute the HOWTOs. 

If you have any questions, please contact  <linux−howto@en.tdlp.org>

1.8. Disclaimer

No liability for the contents of this documents can be accepted.  Use the concepts, examples and other content
at your own risk.  As this is a new edition of this document, there may be errors  and inaccuracies, that may of
course be damaging to your system.  Proceed with caution, and although this is highly unlikely,  the author(s)
do not take any responsibility for that. 

All copyrights are held by their by their respective owners, unless  specifically noted otherwise.  Use of a term
in this document  should not be regarded as affecting the validity of any trademark  or service mark. 

Naming of particular products or brands should not be seen  as endorsements. 

You are strongly recommended to make a backup of your system  before major installations, and back up at
regular intervals. 

Creating SSI Clusters Using UML HOWTO

1.6. Feedback 4

mailto:ssic-linux-devel@lists.sf.net
mailto:linux-howto@en.tdlp.org


2. Getting Started
This section is a quick start guide for installing and running an SSI  cluster of virtual UML machines. The
most time−consuming part of this  procedure is downloading the root image. 

2.1. Root Image

First you need to download a SSI−ready root image. The compressed image  weighs in at over 150MB, which
will take more than six hours to  download over a 56K modem, or about 45 minutes over a 500K  broadband
connection. 

The image is based on Red Hat 7.2. This means the virtual SSI cluster  will be running Red Hat, but it does
not matter which distribution  you run on the host system.  A more advanced user can make a new root  image
based on another distribution. This is described in  Section 5. 

After downloading the root image, extract and install it. 

host$ tar jxvf ~/ssiuml−root−rh72−0.6.5−1.tar.bz2
host$ su
host# cd ssiuml−root−rh72
host# make install
host# Ctrl−D

2.2. UML Utilities

Download the UML utilities. Extract, build, and install them. 

host$ tar jxvf ~/uml_utilities_20020428.tar.bz2
host$ su
host# cd tools
host# make install
host# Ctrl−D

2.3. SSI/UML Utilities

Download the SSI/UML utilities. Extract, build, and install them. 

host$ tar jxvf ~/ssiuml−utils−0.6.5−1.tar.bz2
host$ su
host# cd ssiuml−utils
host# make install
host# Ctrl−D

2. Getting Started 5

http://prdownloads.sf.net/ssic-linux/ssiuml-root-rh72-0.6.5-1.tar.bz2
http://prdownloads.sf.net/user-mode-linux/uml_utilities_20020428.tar.bz2
http://prdownloads.sf.net/ssic-linux/ssiuml-utils-0.6.5-1.tar.bz2


2.4. Booting the Cluster

Assuming X Windows is running or the DISPLAY variable is set to an available X server, start a two node
cluster with 

host$ ssi−start 2

This command boots nodes 1 and 2. It displays each console  in a new xterm. The nodes run through their
early kernel initialization,  then seek each other out and form an SSI cluster before booting the  rest of the way.
If you're anxious to see what an SSI cluster can do,  skip ahead to Section 3. 

You'll probably notice that two other consoles are started. One is the  lock server node, which is an artefact of
how the GFS shared root  is implemented at this time. The console is not a node in the cluster,  and it won't
give you a login prompt. For more information about  the lock server, see Section 7.3. The other console  is for
the UML virtual networking switch daemon. It won't give you a  prompt, either. 

Note that only one SSI/UML cluster can be running at a time, although  it can be run as a non−root user. 

The argument to ssi−start is the number of nodes  that should be in the cluster. It must be a number between 1
and 15.  If this argument is omitted, it defaults to 3.  The fifteen node limit is arbitrary,  and can be easily
increased in future releases. 

To substitute your own SSI/UML files for the ones  in /usr/local/lib and  /usr/local/bin, provide
your pathnames in  ~/.ssiuml/ssiuml.conf.  Values to override are  KERNEL,  ROOT,  CIDEV,
INITRD, and  INITRD_MEMEXP.  This feature is only needed by an advanced user. 

2.5. Booting an Individual Node

Add nodes 3 and 5 to the cluster with 

host$ ssi−add 3 5

The arguments taken by ssi−add are an arbitrary  list of node numbers. The node numbers must be between 1
and 15.  At least one node number must be provided. For  any node that is already up, ssi−add ignores it and
moves on to the next argument in the list. 

2.6. Crashing an Individual Node

Simulate a crash of node 3 with 

host$ ssi−rm 3

Note that this command does not inform the other nodes about the crash.  They must discover it through the
cluster's node monitoring mechanism. 

Creating SSI Clusters Using UML HOWTO

2.4. Booting the Cluster 6



The arguments taken by ssi−rm are an arbitrary  list of node numbers. At least one node number must be
provided. 

2.7. Shutting Down the Cluster

You can take down the entire cluster at once with 

host$ ssi−stop

If ssi−stop hangs, interrupt it and shoot all the  linux−ssi processes before trying again. 

host$ killall −9 linux−ssi
host$ ssi−stop

Eventually, it should be possible to take down the cluster by running  shutdown as root on any one of its
consoles. This  does not work just yet. 

Creating SSI Clusters Using UML HOWTO

2.7. Shutting Down the Cluster 7



3. Playing Around
Bring up a three node cluster with ssi−start.  Log in to all three consoles as root. The  initial password is
root, but you'll be  forced to change it the first time you log in. 

The following demos should familiarize you with what an SSI  cluster can do. 

3.1. Process Movement, Inheriting Open Files and Devices

Start dbdemo on node 1. 

node1# cd ~/dbdemo
node1# ./dbdemo alphabet

The dbdemo program "processes" records from the file  given as an argument. In this case, it's alphabet,
which contains the ICAO alphabet used by aviators. For each record,  dbdemo writes the data to its terminal
device  and spins in a busy loop for a second to simulate an intensive calculation. 

The dbdemo program is also listening on its terminal  device for certain command keys. 

Table 1. Command Keys for dbdemo

Key Description

1−9 move to that node and continue with
the next record 

Enter periodically moves to a random node
until you press a key 

q quit 

Move dbdemo to different nodes. Note that it continues  to send output to the console where it was started,
and that it continues  to respond to keypresses from that console. This demonstrates that although  the process
is running on another node, it can remotely read and write  the device it had open. 

Also note that when a process moves, it preserves its file offsets.  After moving, dbdemo continues
processing records  from alphabet as if nothing had happened. 

To confirm that the process moved to a new node, get its PID and use  where_pid. You can do this on any
node. 

node3# ps −ef | grep dbdemo
node3# where_pid <pid>
2

3. Playing Around 8



If you like, you can download the source for dbdemo.  It's also available as a tarball in the
/root/dbdemo directory. 

3.2. Clusterwide PIDs, Distributed Process Relationships
and Access, Clusterwide Job Control and Single Root

From node 1's console, start up vi on node 2.  The onnode command uses the SSI kernel's  rexec system call
to remotely execute  vi. 

node1# onnode 2 vi /tmp/newfile

Confirm that it's on node 2 with where_pid.  You need to get its PID first. 

node3# ps −ef | grep vi
node3# where_pid <pid>
2

Type some text and save your work.  On node 3, cat the file to see the contents.  This demonstrates the single
root file system. 

node3# cat /tmp/newfile
some text

From node 3, kill the vi session running on node 2.  You should see  control of node 1's console given back to
the shell. 

node3# kill <pid>

3.3. Clusterwide FIFOs

Make a FIFO on the shared root. 

node1# mkfifo /fifo

echo something into the FIFO on node 1. 

node1# echo something >/fifo 

cat the FIFO on node 2. 

node2# cat /fifo
something

Creating SSI Clusters Using UML HOWTO

3.2. Clusterwide PIDs, Distributed Process Relationships  and Access, Clusterwide Job Control and Single Root9

http://ssic-linux.sourceforge.net/dbdemo.tar.bz2


This demostrates that FIFOs are clusterwide and remotely accessible. 

3.4. Clusterwide Device Naming and Access

On node 3, write "Hello World" to the console of node 1. 

node3# echo "Hello World" >/devfs/node1/console

This shows that devices can be remotely accessed from anywhere in the  cluster. Eventually, the
node−specific subdirectories of  /devfs will be merged together into a single  device tree that can be
mounted on /dev without  confusing non−cluster aware applications. 

Creating SSI Clusters Using UML HOWTO

3.4. Clusterwide Device Naming and Access 10



4. Building a Kernel and Ramdisk
Building your own kernel and ramdisk is necessary if you want to 

customize the kernel configuration, • 
keep up with the absolute latest SSI code available through CVS, • 
or test your SSI bugfix or kernel enhancement with UML. • 

Otherwise, feel free to skip this section. 

4.1. Getting SSI Source

SSI source code is available as official release tarballs and through CVS.  The CVS repository contains the
latest, bleeding−edge code. It can be less  stable than the official release, but it has features and bugfixes that
the release does not have. 

4.1.1. Official Release

The latest SSI release can be found at the top of this release list. At the time of this writing, the latest  release
is 0.6.5. 

Download the latest release. Extract it. 

host$ tar jxvf ~/ssi−linux−2.4.16−v0.6.5.tar.bz2

Determine the corresponding kernel version number from the release name.  It appears before the SSI version
number. For the 0.6.5 release,  the corresponding kernel version is 2.4.16. 

4.1.2. CVS Checkout

Follow these instructions to do a CVS checkout of the latest SSI code.  The modulename is ssic−linux. 

You also need to check out the latest CI code. Follow these  instructions to do that.  The modulename is
ci−linux. 

To do a developer checkout, you must be a CI or SSI developer.  If you are interested in becoming a
developer, read  Section 8.3 and Section 8.4. 

Determine the corresponding kernel version with 

host$ head −4 ssic−linux/ssi−kernel/Makefile
VERSION = 2
PATCHLEVEL = 4
SUBLEVEL = 16
EXTRAVERSION =

4. Building a Kernel and Ramdisk 11

http://sourceforge.net/project/showfiles.php?group_id=32541
http://sourceforge.net/cvs/?group_id=32541
http://sourceforge.net/cvs/?group_id=32543


In this case, the corresponding kernel version is 2.4.16. If you're  paranoid, you might want to make sure the
corresponding kernel version  for CI is the same. 

host$ head −4 ci−linux/ci−kernel/Makefile
VERSION = 2
PATCHLEVEL = 4
SUBLEVEL = 16
EXTRAVERSION =

They will only differ when I'm merging them up to a new kernel version.  There is a window between
checking in the new CI code and the new SSI  code. I'll do my best to minimize that window. If you happen to
see it,  wait a few hours, then update your sandboxes. 

host$ cd ssic−linux
host$ cvs up −d
host$ cd ../ci−linux
host$ cvs up −d
host$ cd ..

4.2. Getting the Base Kernel

Download the appropriate kernel source. Get the version you  determined in Section 4.1. Kernel source can be
found  on this U.S. server or any one of these mirrors around the world. 

Extract the source. This will take a little time. 

host$ tar jxvf ~/linux−2.4.16.tar.bz2

or 

host$ tar zxvf ~/linux−2.4.16.tar.gz

4.3. Applying SSI Kernel Code

Follow the appropriate instructions, based on whether you downloaded  an official SSI release or did a CVS
checkout. 

4.3.1. Official Release

Apply the patch in the SSI source tree. 

Creating SSI Clusters Using UML HOWTO

4.2. Getting the Base Kernel 12

http://www.kernel.org/pub/linux/kernel/v2.4/
http://kernel.org/mirrors/


host$ cd linux
host$ patch −p1 <../ssi−linux−2.4.16−v0.6.5/ssi−linux−2.4.16−v0.6.5.patch

4.3.2. CVS Checkout

Apply the UML patch from either the CI or SSI sandbox. It will fail  on patching Makefile. Don't worry
about this. 

host$ cd linux
host$ patch −p1 <../ssic−linux/3rd−party/uml−patch−2.4.18−22

Copy CI and SSI code into place. 

host$ cp −alf ../ssic−linux/ssi−kernel/. .
host$ cp −alf ../ci−linux/ci−kernel/. .

Apply the GFS patch from the SSI sandbox. 

host$ patch −p1 <../ssic−linux/3rd−party/opengfs−ssi.patch

Apply any other patch from  ssic−linux/3rd−party at your discretion.  They haven't been tested much
or at all in the UML environment.  The KDB patch is rather useless in this environment. 

4.4. Building the Kernel

Configure the kernel with the provided configuration  file. The following commands assume you are still in
the kernel source  directory. 

host$ cp config.uml .config
host$ make oldconfig ARCH=um

Build the kernel image and modules. 

host$ make dep linux modules ARCH=um

4.5. Adding GFS Support to the Host

To install the kernel you must be able to loopback mount the  GFS root image. You need to do a few things to
the  host system to make that possible. 

Download any version of OpenGFS after 0.0.92, or check out the latest source from CVS. 

Creating SSI Clusters Using UML HOWTO

4.3.2. CVS Checkout 13

http://opengfs.org/sourceframe.html
http://sourceforge.net/cvs/?group_id=34688


Apply the appropriate kernel patches from the  kernel_patches directory to your kernel source tree.
Make sure you enable the /dev filesystem, but  do not have it automatically mount at boot.  (When you
configure the kernel select 'File systems −> /dev  filesystem support' and unselect 'File systems −> /dev
filesystem  support −> Automatically mount at boot'.)  Build the kernel as usual, install it, rewrite your boot
block and  reboot. 

Configure, build and install the GFS modules and utilities. 

host$ cd opengfs
host$ ./autogen.sh −−with−linux_srcdir=host_kernel_source_tree
host$ make
host$ su
host# make install

Configure two aliases for one of the host's network devices. The first  alias should be 192.168.50.1, and the
other should be 192.168.50.101.  Both should have a netmask of 255.255.255.0. 

host# ifconfig eth0:0 192.168.50.1 netmask 255.255.255.0
host# ifconfig eth0:1 192.168.50.101 netmask 255.255.255.0

cat the contents of  /proc/partitions. Select two device names  that you're not using for anything else,
and make two loopback devices  with their names. For example: 

host# mknod /dev/ide/host0/bus0/target0/lun0/part1 b 7 1
host# mknod /dev/ide/host0/bus0/target0/lun0/part2 b 7 2

Finally, load the necessary GFS modules and start the lock server daemon. 

host# modprobe gfs
host# modprobe memexp
host# memexpd
host# Ctrl−D

Your host system now has GFS support. 

4.6. Installing the Kernel

Loopback mount the shared root. 

host$ su
host# losetup /dev/loop1 root_cidev
host# losetup /dev/loop2 root_fs
host# passemble
host# mount −t gfs −o hostdata=192.168.50.1 /dev/pool/pool0 /mnt

Install the modules into the root image. 

Creating SSI Clusters Using UML HOWTO

4.6. Installing the Kernel 14



host# make modules_install ARCH=um INSTALL_MOD_PATH=/mnt
host# Ctrl−D

4.7. Building GFS for UML

You have to repeat some of the steps you did in Section 4.5.  Extract another copy of the OpenGFS source.
Call it  opengfs−uml. Add the following line to  make/modules.mk.in. 

 KSRC           := /root/linux−ssi

 INCL_FLAGS     := −I. −I.. −I$(GFS_ROOT)/src/include −I$(KSRC)/include \
+                   −I$(KSRC)/arch/um/include \
                    $(EXTRA_INCL)
 DEF_FLAGS      := −D__KERNEL__ −DMODULE  $(EXTRA_FLAGS)
 OPT_FLAGS      := −O2 −fomit−frame−pointer 

Configure, build and install the GFS modules and utilities for UML. 

host$ cd opengfs−uml
host$ ./autogen.sh −−with−linux_srcdir=UML_kernel_source_tree
host$ make
host$ su
host# make install DESTDIR=/mnt

4.8. Building the Ramdisk

Change root into the loopback mounted root image, and use the  −−uml argument to  cluster_mkinitrd to
build a ramdisk. 

host# /usr/sbin/chroot /mnt
host# cluster_mkinitrd −−uml initrd−ssi.img 2.4.16−21um

Move the new ramdisk out of the root image, and assign ownership  to the appropriate user. Wrap things up. 

host# mv /mnt/initrd−ssi.img ~username
host# chown username ~username/initrd−ssi.img
host# umount /mnt
host# passemble −r all
host# losetup −d /dev/loop1
host# losetup −d /dev/loop2
host# Ctrl−D
host$ cd ..

Creating SSI Clusters Using UML HOWTO

4.7. Building GFS for UML 15



4.9. Booting the Cluster

Pass the new kernel and ramdisk images into ssi−start with the appropriate pathnames for  KERNEL and
INITRD in  ~/.ssiuml/ssiuml.conf.  An example for KERNEL would be ~/linux/linux.  An
example for INITRD would be ~/initrd−ssi.img. 

Stop the currently running cluster and start again. 

host$ ssi−stop
host$ ssi−start

You should see a three−node cluster booting with your new kernel.  Feel free to take it through the exercises
in Section 3 to make sure it's working correctly. 

Creating SSI Clusters Using UML HOWTO

4.9. Booting the Cluster 16



5. Building a Root Image
Building your own root image is necessary if you want to use a  distribution other than Red Hat 7.2.
Otherwise, feel free to skip  this section. 

These instructions describe how to build a Red Hat 7.2 image.  At the end of this section is a brief discussion
of how other  distributions might differ. Building a root image for another  distribution is left as an exercise for
the reader. 

5.1. Base Root Image

Download the Red Hat 7.2 root image from the User−Mode Linux (UML) project.  As with the root image
you downloaded in Section 2.1,  it is over 150MB. 

Extract the image. 

host$ bunzip2 −c root_fs.rh72.pristine.bz2 >root_fs.ext2

Loopback mount the image. 

host$ su
host# mkdir /mnt.ext2
host# mount root_fs.ext2 /mnt.ext2 −o loop,ro

5.2. GFS Root Image

Make a blank GFS root image. You also need to create an  accompanying lock table image. Be sure you've
added support  for GFS to your host system by following the instructions in  Section 4.5. 

host# dd of=root_cidev bs=1024 seek=4096 count=0
host# dd of=root_fs bs=1024 seek=2097152 count=0
host# chmod a+w root_cidev root_fs
host# losetup /dev/loop1 root_cidev
host# losetup /dev/loop2 root_fs

Enter the following pool information into a file  named pool0cidev.cf. 

poolname pool0cidev
subpools 1
subpool 0 0 1 gfs_data
pooldevice 0 0 /dev/loop1 0

Enter the following pool information into a file  named pool0.cf. 

5. Building a Root Image 17

http://prdownloads.sf.net/user-mode-linux/root_fs.rh72.pristine.bz2


poolname pool0
subpools 1
subpool 0 0 1 gfs_data
pooldevice 0 0 /dev/loop2 0

Write the pool information to the loopback devices. 

host# ptool pool0cidev.cf
host# ptool pool0.cf

Create the pool devices. 

host# passemble

Enter the following lock table into a file named  gfscf.cf. 

datadev:        /dev/pool/pool0
cidev:          /dev/pool/pool0cidev
lockdev:        192.168.50.101:15697
cbport:         3001
timeout:        30
STOMITH: NUN
name:none
node: 192.168.50.1      1       SM: none
node: 192.168.50.2      2       SM: none
node: 192.168.50.3      3       SM: none
node: 192.168.50.4      4       SM: none
node: 192.168.50.5      5       SM: none
node: 192.168.50.6      6       SM: none
node: 192.168.50.7      7       SM: none
node: 192.168.50.8      8       SM: none
node: 192.168.50.9      9       SM: none
node: 192.168.50.10     10      SM: none
node: 192.168.50.11     11      SM: none
node: 192.168.50.12     12      SM: none
node: 192.168.50.13     13      SM: none
node: 192.168.50.14     14      SM: none
node: 192.168.50.15     15      SM: none

Write the lock table to the cidev pool device. 

host# gfsconf −c gfscf.cf

Format the root disk image. 

host# mkfs_gfs −p memexp −t /dev/pool/pool0cidev −j 15 −J 32 −i /dev/pool/pool0

Mount the root image. 

host# mount −t gfs −o hostdata=192.168.50.1 /dev/pool/pool0 /mnt

Creating SSI Clusters Using UML HOWTO

5. Building a Root Image 18



Copy the ext2 root to the GFS image. 

host# cp −a /mnt.ext2/. /mnt

Clean up. 

host# umount /mnt.ext2
host# rmdir /mnt.ext2
host# Ctrl−D
host$ rm root_fs.ext2

5.3. Getting Cluster Tools Source

Cluster Tools source code is available as official release tarballs and  through CVS.  The CVS repository
contains the latest, bleeding−edge code.  It can be less stable than the official release, but it has features and
bugfixes that the release does not have. 

5.3.1. Official Release

The latest release can be found at the top of  the Cluster−Tools section of this release list. At the time of this
writing, the latest  release is 0.6.5. 

Download the latest release. Extract it. 

host$ tar jxvf ~/cluster−tools−0.6.5.tar.bz2

5.3.2. CVS Checkout

Follow these instructions to do a CVS checkout of the latest Cluster Tools  code.  The modulename is
cluster−tools. 

To do a developer checkout, you must be a CI developer.  If you are interested in becoming a developer, read
Section 8.3 and Section 8.4. 

5.4. Building and Installing Cluster Tools

host$ su
host# cd cluster−tools
host# make install_ssi_redhat UML_ROOT=/mnt

Creating SSI Clusters Using UML HOWTO

5.3. Getting Cluster Tools Source 19

http://sourceforge.net/project/showfiles.php?group_id=32543
http://sourceforge.net/cvs/?group_id=32543


5.5. Installing Kernel Modules

If you built a kernel, as described in Section 4,  then follow the instructions in Section 4.4 and  Section 4.7 to
install kernel and GFS modules onto your  new root. 

Otherwise, mount the old root image and copy the modules directory from  /mnt/lib/modules. Then
remount the new root image  and copy the modules into it. 

5.6. Configuring the Root

Remake the ubd devices. At some point, the UML team switched the device  numbering scheme from
98,1 for dev/ubd/1,  98,2 for dev/ubd/2, etc.  Now they use  98,16 for dev/ubd/1,  98,32 for
dev/ubd/2, etc. 

Comment and uncomment the appropriate lines in  /mnt/etc/inittab.ssi. Search for the  phrase 'For
UML' to see which lines to change. Basically,  you should disable the DHCP daemon, and change the getty  to
use tty0 rather than tty1. 

You may want to strip down the operating system so that it boots quicker.  For the prepackaged root image, I
removed the following files. 

/etc/rc3.d/S25netfs
/etc/rc3.d/S50snmpd
/etc/rc3.d/S55named
/etc/rc3.d/S55sshd
/etc/rc3.d/S56xinetd
/etc/rc3.d/S80sendmail
/etc/rc3.d/S85gpm
/etc/rc3.d/S85httpd
/etc/rc3.d/S90crond
/etc/rc3.d/S90squid
/etc/rc3.d/S90xfs
/etc/rc3.d/S91smb
/etc/rc3.d/S95innd

You might also want to copy dbdemo and its associated  alphabet file into /root/dbdemo.  This lets
you run the demo described in Section 3.1. 

5.7. Unmounting the Root Image

host# umount /mnt
host# passemble −r all
host# losetup −d /dev/loop1
host# losetup −d /dev/loop2

Creating SSI Clusters Using UML HOWTO

5.5. Installing Kernel Modules 20



5.8. Distributions Other Than Red Hat

Cluster Tools has make rules for Caldera and  Debian, in addition to Red Hat.  Respectively, the rules are
install_ssi_caldera and  install_ssi_debian. 

The main difference between the distributions is the  /etc/inittab.ssi installed. It is the  inittab used by
the clusterized init.ssi program. It is based on the distribution's  /etc/inittab, but has some
cluster−specific  enhancements that are recognized by init.ssi. 

There is also some logic in the /etc/rc.d/rc.nodeup script to detect which distribution it's on. This
script is run whenever  a node joins the cluster, and it needs to do different things for  different distributions. 

Finally, there are some modifications to the networking scripts to  prevent them from tromping on the cluster
interconnect configuration.  They're a short−term hack, and they've only been implemented for  Red Hat so far.
The modified files are  /etc/sysconfig/network−scripts/ifcfg−eth0 and
/etc/sysconfig/network−scripts/network−functions. 

Creating SSI Clusters Using UML HOWTO

5.8. Distributions Other Than Red Hat 21



6. Moving to a Hardware−Based Cluster
If you plan to use SSI clustering in a production system, you probably  want to move to a hardware−based
cluster. That way you can take advantage  of the high−availability and scalability that a hardware−based SSI
cluster  can offer. 

Hardware−based SSI clusters have significantly higher availability. If  a UML host kernel panics, or the host
machine has a hardware failure,  its UML−based SSI cluster goes down. On the other hand, if one of the SSI
kernels panic, or one of the hardware−based nodes has a failure, the  cluster continues to run. Centralized
kernel services can failover  to a new node, and critical user−mode programs can be restarted by  the
application monitoring and restart daemon. 

Hardware−based SSI clusters also have significantly higher scalability.  Each node has one or more CPUs that
truly work in parallel, whereas  a UML−based cluster merely simulates having multiple nodes by
time−sharing  on the host machine's CPUs. Adding nodes to a hardware−based cluster  increases the volume of
work it can handle, but adding nodes to a UML−based  cluster bogs it down with more processes to run on the
same number of CPUs. 

6.1. Requirements

You can build hardware−based SSI clusters with x86 or Alpha machines.  More architectures, such as IA64,
may be added in the future. Note that  an SSI cluster must be homogeneous. You cannot mix architectures  in
the same cluster. 

The cluster interconnect must support TCP/IP networking. 100 Mbps  ethernet is acceptable. For security
reasons, it should be a  private network. Each node should have a second network interface for  external traffic. 

Right now, the most expensive requirement of an SSI cluster is the  shared drive, required for the shared GFS
root. This will no longer  be a requirement when CFS, which is described below, is available.  The typical
configuration for  the shared drive is a hardware RAID disk cabinet attached to all  nodes with a Fibre Channel
SAN. For a two−node cluster, it is also  possible to use shared SCSI, but it is not directly supported by  the
current cluster management tools. 

The GFS shared root also requires one Linux machine outside of the  cluster to be the lock server. It need not
be the same architecture  as the nodes in the cluster. It just has to run  memexpd, a user−mode daemon.
Eventually, GFS will  work with a Distributed Lock Manager (DLM). This would  eliminate the need for the
external lock server, which is a single  point of failure. It could also free up the machine to be another  node in
your cluster. 

In the near future, the Cluster File System (CFS) will be an option  for the shared root. It is a stateful NFS that
uses a token mechanism  to provide tight coherency guarantees. With CFS, the shared root  can be stored on
the internal disk of one of the nodes. The on−disk  format can be any journalling file system, such as ext3 or
ReiserFS. 

The initial version of CFS will not provide high availability.  Future versions of CFS will allow the root to be
mirrored across  the internal disks of two nodes. A technology such as the Distributed  Replicated Block
Device (DRBD) would be used for this. This is a low−cost  solution for the shared root, although it has a
performance penalty. 

6. Moving to a Hardware−Based Cluster 22



Future versions will also allow the root to be stored on a  disk shared by two or  more nodes, but not
necessarily shared by all nodes.  If the CFS server node crashes, its responsibilities  would failover to another
node attached to the shared disk. 

6.2. Resources

Start with the installation instructions for SSI. 

If you'd like to install SSI from CVS code, follow these instructions to checkout modulename  ssic−linux, and
these instructions to checkout modulenames  ci−linux and cluster−tools.  Read the INSTALL and
INSTALL.cvs files in both the  ci−linux and ssic−linux sandboxes. Also look at the README file in
the  cluster−tools sandbox. 

For more information, read Section 7. 

Creating SSI Clusters Using UML HOWTO

6.2. Resources 23

http://ssic-linux.sourceforge.net/install.shtml
http://sourceforge.net/cvs/?group_id=32541
http://sourceforge.net/cvs/?group_id=32543


7. Further Information
Here are some links to information on SSI clusters, CI clusters, GFS,  UML, and other clustering projects. 

7.1. SSI Clusters

Start with the SSI project  homepage. In particular, the documentation may be of interest.  The SourceForge
project summary page also has some useful information. 

If you have a question or concern, post it to the  <ssic−linux−devel@lists.sf.net> mailing list.  If
you'd like to subscribe, you can do so through this web form. 

If you are working from a CVS sandbox, you may also want to sign up  for the ssic−linux−checkins mailing
list to receive  checkin notices. You can do that through this web form. 

7.2. CI Clusters

Start with the CI project  homepage. In particular, the documentation may be of interest.  The SourceForge
project summary page also has some useful information. 

If you have a question or concern, post it to the  <ci−linux−devel@lists.sf.net> mailing list.  If
you'd like to subscribe, you can do so through this web form. 

If you are working from a CVS sandbox, you may also want to sign up  for the ci−linux−checkins mailing list
to receive  checkin notices. You can do that through this web form. 

7.3. GFS

SSI clustering currently depends on the Global File System (GFS) to  provide a single root. The open−source
version of GFS is maintained  by the OpenGFS project.  They also have a SourceForge project summary page. 

Right now, GFS requires either a DMEP−equipped shared drive or a lock  server outside the cluster. The lock
server is the only software solution  for coordinating disk access, and it is not truly HA. There are plans to
make OpenGFS support IBM's Distributed Lock Manager (DLM), which would distribute the  lock server's
responsibilities across all the nodes in the cluster.  If any node fails, the locks it managed would failover to
other nodes.  This would be a true HA software solution for coordinating disk access. 

If you have a question or concern, post it to the  <opengfs−users@lists.sf.net> mailing list.  If
you'd like to subscribe, you can do so through this web form. 

7.4. UML

The User−Mode Linux (UML) project has a homepage and a SourceForge project summary page. 

7. Further Information 24

http://ssic-linux.sf.net/
http://ssic-linux.sourceforge.net/docs.shtml
http://sourceforge.net/projects/ssic-linux/
mailto:ssic-linux-devel@lists.sf.net
http://lists.sourceforge.net/lists/listinfo/ssic-linux-devel
http://lists.sourceforge.net/lists/listinfo/ssic-linux-checkins
http://ci-linux.sf.net/
http://ci-linux.sourceforge.net/docs.shtml
http://sourceforge.net/projects/ci-linux/
mailto:ci-linux-devel@lists.sf.net
http://lists.sourceforge.net/lists/listinfo/ci-linux-devel
http://lists.sourceforge.net/lists/listinfo/ci-linux-checkins
http://www.opengfs.org/
http://sourceforge.net/projects/opengfs/
http://oss.software.ibm.com/dlm/
mailto:opengfs-users@lists.sf.net
http://lists.sourceforge.net/lists/listinfo/opengfs-users
http://user-mode-linux.sf.net/
http://sourceforge.net/projects/user-mode-linux/


If you have a question or concern, post it to the  <user−mode−linux−user@lists.sf.net> mailing
list.  If you'd like to subscribe, you can do so through this web form. 

7.5. Other Clustering Projects

Other clustering projects include  Mosix,  Linux Virtual Server,  Beowulf,  HA Linux and  FailSafe. 

Creating SSI Clusters Using UML HOWTO

7.5. Other Clustering Projects 25

mailto:user-mode-linux-user@lists.sf.net
http://lists.sourceforge.net/lists/listinfo/user-mode-linux-user
http://openmosix.sourceforge.net/
http://www.LinuxVirtualServer.org/
http://www.beowulf.org/
http://linux-ha.org/
http://oss.sgi.com/projects/failsafe/


8. Contributing
If you'd like to contribute to the SSI project, you can do so by  testing it, writing documentation, fixing bugs,
or working on new  features. 

8.1. Testing

While using the SSI clustering software, you may run into bugs or  features that don't work as well as they
should. If so, browse the  SSI and CI bug databases to see if someone has seen the same problem.  If not, either
post a bug yourself or post a message to  <ssic−linux−devel@lists.sf.net> to discuss the issue
further. 

It is important to be as specific as you can in your bug report or  posting. Simply saying that the SSI kernel
doesn't boot or that it  panics is not enough information to diagnose your problem. 

8.2. Documentation

There is already some documentation for SSI and CI, but more would certainly be welcome. If you'd like  to
write instructions for users or internals documentation for developers,  post a message to
<ssic−linux−devel@lists.sf.net> to  express your interest. 

8.3. Debugging

Debugging is a great way to get your feet wet as a developer.  Browse the SSI and CI bug databases to see
what problems need to be fixed. If  a bug looks interesting, but is assigned to a developer, contact them  to see
if they are actually working on it. 

After fixing the problem, send your patch to  <ssic−linux−devel@lists.sf.net> or
<ci−linux−devel@lists.sf.net>. If it looks good, a developer  will check it into the repository.
After submitting a few patches, you'll  probably be invited to become a developer yourself. Then you'll be
able  to checkin your own work. 

8.4. Adding New Features

After fixing a bug or two, you may be inclined to work on enhancing or  adding an SSI feature. You can look
over the SSI and CI project lists for ideas, or you can suggest something  of your own. Before you start
working on a feature,  discuss it first on <ssic−linux−devel@lists.sf.net> or
<ci−linux−devel@lists.sf.net>. 

8. Contributing 26

http://sf.net/tracker/?atid=405834&group_id=32541&func=browse
http://sf.net/tracker/?atid=405830&group_id=32543&func=browse
http://sf.net/tracker/?atid=405834&group_id=32541&func=add
mailto:ssic-linux-devel@lists.sf.net
http://ssic-linux.sourceforge.net/docs.shtml
http://ci-linux.sourceforge.net/docs.shtml
mailto:ssic-linux-devel@lists.sf.net
http://sf.net/tracker/?atid=405834&group_id=32541&func=browse
http://sf.net/tracker/?atid=405830&group_id=32543&func=browse
mailto:ssic-linux-devel@lists.sf.net
mailto:ci-linux-devel@lists.sf.net
http://ssic-linux.sourceforge.net/index.shtml#projects
http://ci-linux.sourceforge.net/index.shtml#projects
mailto:ssic-linux-devel@lists.sf.net
mailto:ci-linux-devel@lists.sf.net


9. Concluding Remarks
Hopefully, you find SSI clustering technology to be useful for your  application that demands availability,
scalability, and manageability  at the same time. 

If you have any questions or comments, don't hesitate to post them  to
<ssic−linux−devel@lists.sf.net>. 

9. Concluding Remarks 27

mailto:ssic-linux-devel@lists.sf.net

	Table of Contents
	1. Introduction
	1.1. Overview of SSI Clustering
	1.1.1. Cluster Infrastructure (CI)
	1.1.2. Global File System (GFS)
	1.1.3. Keepalive/Spawndaemon
	1.1.4. Linux Virtual Server (LVS)
	1.1.5. Mosix Load-Leveler

	1.2. Overview of UML
	1.3. Intended Audience
	1.4. System Requirements
	1.5. New Versions
	1.6. Feedback
	1.7. Copyright Information
	1.8. Disclaimer

	2. Getting Started
	2.1. Root Image
	2.2. UML Utilities
	2.3. SSI/UML Utilities
	2.4. Booting the Cluster
	2.5. Booting an Individual Node
	2.6. Crashing an Individual Node
	2.7. Shutting Down the Cluster

	3. Playing Around
	3.1. Process Movement, Inheriting Open Files and Devices
	3.2. Clusterwide PIDs, Distributed Process Relationships  and Access, Clusterwide Job Control and Single Root
	3.3. Clusterwide FIFOs
	3.4. Clusterwide Device Naming and Access

	4. Building a Kernel and Ramdisk
	4.1. Getting SSI Source
	4.1.1. Official Release
	4.1.2. CVS Checkout

	4.2. Getting the Base Kernel
	4.3. Applying SSI Kernel Code
	4.3.1. Official Release
	4.3.2. CVS Checkout

	4.4. Building the Kernel
	4.5. Adding GFS Support to the Host
	4.6. Installing the Kernel
	4.7. Building GFS for UML
	4.8. Building the Ramdisk
	4.9. Booting the Cluster

	5. Building a Root Image
	5.1. Base Root Image
	5.2. GFS Root Image
	5.3. Getting Cluster Tools Source
	5.3.1. Official Release
	5.3.2. CVS Checkout

	5.4. Building and Installing Cluster Tools
	5.5. Installing Kernel Modules
	5.6. Configuring the Root
	5.7. Unmounting the Root Image
	5.8. Distributions Other Than Red Hat

	6. Moving to a Hardware-Based Cluster
	6.1. Requirements
	6.2. Resources

	7. Further Information
	7.1. SSI Clusters
	7.2. CI Clusters
	7.3. GFS
	7.4. UML
	7.5. Other Clustering Projects

	8. Contributing
	8.1. Testing
	8.2. Documentation
	8.3. Debugging
	8.4. Adding New Features

	9. Concluding Remarks

