
 Modem−HOWTO

Table of Contents
 Modem−HOWTO..1

David S.Lawyermailto:dave@lafn.org...1
1. Introduction..1
2. Modems for a Linux PC...1
3. Modem Pools...1
4. Serial Port and Modem Basics...1
5. Configuring Overview...2
6. Locating the Serial Port: IO address, IRQs..2
7. Configuring the Serial Driver (high−level) "stty"...2
8. Modem Configuration (excluding serial port)...2
9. Serial Port Devices /dev/ttyS2, (or /dev/ttys/2) etc..2
10. Interesting Programs You Should Know About..3
11. Trying Out Your Modem (Dialing Out)..3
12. Dial−In...3
13. Uugetty for Dial−In (from the old Serial−HOWTO)...3
14. What Speed Should I Use with My Modem?..3
15. Communications Programs And Utilities..3
16. Two Modems (Modem Doubling)...4
17. Troubleshooting...4
18. Flash Upgrades...4
19. Other Sources of Information..4
20. Appendix A: How Analog Modems Work (technical) (unfinished)...5
21. Appendix B: (Reserved for future use)..5
22. Appendix C: "baud" vs. "bps"..5
23. Appendix D: Terminal Server Connection..5
24. Appendix E: Digital Modems: ISDN, DSL, RAS...5
25. Appendix F: Leased Line Modems..5
26. Appendix G: Fax pixels (dots)...5
27. Appendix H: Antique Modems..5
1. Introduction..5
1.1 DSL, Cable, and ISDN Modems in other HOWTOs...6
1.2 Also not covered: PCMCIA Modems, PPP...6
1.3 Copyright, Disclaimer, Trademarks, & Credits...6

Copyright...6
Disclaimer...6
Trademarks..7
Credits...7

1.4 Contacting the Author..7
 1.5 New Versions of this HOWTO...7
1.6 New in Recent Versions...7
 1.7 What is a Modem ?...8
1.8 Does My Computer Contain an Internal Modem ?..8
 1.9 Quick Install..8

External Modem Install...8
Internal Modems (ISA, PCI and AMR)..9
Internal Modems: Manual configuration...9
ISA Modems: What IOs and IRQs may be used?...9
Both PCI and ISA: Use setserial to tell the serial driver...9

 Modem−HOWTO

i

Table of Contents
 Modem−HOWTO

Use MS Windows to set the BIOS (A last resort method)...10
 All Modems..10

2. Modems for a Linux PC...10
 2.1 External vs. Internal..10
2.2 Is a Driver Needed ?..11
2.3 External Modems...11

PnP External Modems...11
Cabling & Installation...11
What the Lights (LED's) Mean (for some external modems)...12

2.4 Internal Modems..12
 2.5 Software−based Modems (winmodems, linmodems)...12

Introduction to software modems (winmodems)...12
Linmodems..13
Linmodem sites and documentation..13
Software−based modem types...13
Is this modem a software modem?..14
Should I get a software modem?...14

 2.6 PCI Modems...15
2.7 AMR Modems...15
 2.8 USB Modems..15
 2.9 Which Internal Modems might not work with Linux...15

 MWave and some DSP Modems..16
 Rockwell (RPI) Drivers..16

3. Modem Pools...17
3.1 Introduction..17
3.2 Analog Modem Pools, Multi−modem Cards...17
 3.3 Digital Modems, RAS...18
 4. Serial Port and Modem Basics..18
4.1 Modem Converts Digital to Analog (and conversely)...18
4.2 What is a Serial Port ?..19

Intro to Serial...19
Pins and Wires...19
Internal Modem Contains Serial Port..20

4.3 IO Address & IRQ...20
4.4 Names: ttyS0, ttyS1, etc...20
 4.5 Interrupts...20
4.6 Data Compression (by the Modem)...21
4.7 Error Correction...22
4.8 Data Flow (Speeds)..22
 4.9 Flow Control...23

Example of Flow Control..23
Hardware vs. Software Flow Control..24
Symptoms of No Flow Control...24
 Modem−to−Modem Flow Control...25

4.10 Data Flow Path; Buffers...25
4.11 Modem Commands..26
4.12 Serial Driver Module...26

 Modem−HOWTO

ii

Table of Contents
 Modem−HOWTO

5. Configuring Overview...26
 6. Locating the Serial Port: IO address, IRQs...27
6.1 IO & IRQ Overview...27
 6.2 PCI Bus Support...28

Introduction...28
More info on PCI...29

6.3 Common mistakes made re low−level configuring...29
 6.4 IRQ & IO Address Must be Correct...29
6.5 What is the IO Address and IRQ per the driver ?..29

Introduction...29
 I/O Address & IRQ: Boot−time messages...30
 The /proc directory and setserial..31

 6.6 What is the IO Address & IRQ of my Serial Port Hardware?..31
Introduction...31
 PCI: What IOs and IRQs have been set?..31
 PCI: Enabling a disabled port...32
 ISA PnP ports...32
Finding a port that is not disabled (ISA, PCI, PnP, non−PnP)..32
Exploring via MS Windows (a last resort)..33

 6.7 Choosing Serial IRQs...33
IRQ 0 is not an IRQ...33
 Interrupt sharing, Kernels 2.2+..33
What IRQs to choose?...33

 6.8 Choosing Addresses −−Video card conflict with ttyS3..34
 6.9 Set IO Address & IRQ in the hardware (mostly for PnP)...35

 Using a PnP BIOS to I0−IRQ Configure...35
6.10 Giving the IRQ and IO Address to Setserial..36
 7. Configuring the Serial Driver (high−level) "stty"..36
7.1 Introduction..36
7.2 Hardware flow control (RTS/CTS)..36
7.3 Speed Settings..37
7.4 Ignore CD Setting: clocal...37
 7.5 What is stty ?...37
 8. Modem Configuration (excluding serial port)..37
8.1 Finding Your Modem..37
8.2 AT Commands...38
 8.3 Init Strings: Saving and Recalling..38

Where is my "init string" so I can modify it ?...39
 8.4 Other AT Modem Commands..40
8.5 Blacklisting..40
8.6 What AT Commands are Now Set in my Modem?...40
8.7 Modem States (or Modes)..41
 9. Serial Port Devices /dev/ttyS2, (or /dev/ttys/2) etc...41
9.1 Devfs (The new Device File System)..41
 9.2 Serial Port Device Names & Numbers...42
9.3 USB (Universal Serial Bus) Ports..42
9.4 Link ttySN to /dev/modem..42

 Modem−HOWTO

iii

Table of Contents
 Modem−HOWTO

 9.5 cua Device Obsolete...42
10. Interesting Programs You Should Know About..43
 10.1 What is setserial ?...43

Introduction...43
 Probing...44
 Boot−time Configuration...45
 Configuration Scripts/Files...45
 Edit a script (required prior to version 2.15)..45
 New configuration method using /etc/serial.conf...46
IRQs...47
 Laptops: PCMCIA..48

10.2 What is isapnp ?...48
 10.3 What is wvdialconf ?..48
 11. Trying Out Your Modem (Dialing Out)...48
11.1 Are You Ready to Dial Out ?...48
 11.2 Dialing Out with wvdial...49
 11.3 Dialing Out with Minicom..49
 11.4 Dialing Out with Kermit...50
 12. Dial−In..51
12.1 Dial−In Overview..51
12.2 What Happens when Someone Dials In ?..51
12.3 56k Doesn't Work for Dialin..52
 12.4 Getty..52

Introduction to Getty...52
How getty respawns..53
 About mgetty..53
 About uugetty...54
 About getty_em..54
 About agetty...54
About mingetty, and fbgetty..54

12.5 Why "Manual" Answer is Best..54
 12.6 Dialing Out while Waiting for an Incoming Call...55
12.7 Ending a Dial−in Call..55

Caller logs out...55
When DTR drops (is negated)...56
 Caller hangs up...56

 12.8 Dial−in Modem Configuration...57
12.9 Callback...57
 12.10 Voice Mail..57
 12.11 Simple Manual Dial−In..58
12.12 Complex GUI Dial−In, VNC...58
12.13 Interoperability with MS Windows...59
 13. Uugetty for Dial−In (from the old Serial−HOWTO)..59
13.1 Installing getty_ps..59
13.2 Setting up uugetty..60

Modern Modems...60
Old slow modems..60

 Modem−HOWTO

iv

Table of Contents
 Modem−HOWTO

Login Banner..61
13.3 Customizing uugetty..61
 14. What Speed Should I Use with My Modem?...62
14.1 Speed and Data Compression..62
14.2 Where do I Set Speed ?..62
 14.3 Can't Set a High Enough Speed..63

Speeds over 115.2k..63
 How speed is set in hardware: the divisor and baud_base...63
Setting the divisor, speed accounting..64
Crystal frequency is higher than baud_base..64

 14.4 Speed Table...64
 15. Communications Programs And Utilities...65
15.1 Minicom vs. Kermit...65
15.2 List of Communication Software...65

Least Popular Dialout..65
Most Popular Dialout..65
 Fax..66
 Voicemail Software..66
Dial−in (uses getty)...66
Other..66

 15.3 SLiRP and term...66
15.4 MS Windows...67
16. Two Modems (Modem Doubling)...67
16.1 Introduction..67
16.2 Modem Bonding..67

EQL...67
Multilink..68

 17. Troubleshooting..68
 17.1 My Modem is Physically There but Can't be Found..68

 No response to AT..68
17.2 "Modem is busy"..69
 17.3 "You are already online! Hang up first." (from minicom)..69
17.4 I can't get near 56k on my 56k modem..69
17.5 Uploading (downloading) files is broken/slow..70
17.6 For Dial−in I Keep Getting "line NNN of inittab invalid"..70
17.7 I Keep Getting: ``Id "S3" respawning too fast: disabled for 5 minutes''..70
17.8 My Modem is Hosed after Someone Hangs Up, or uugetty doesn't respawn...............................70
17.9 NO DIALTONE...71
17.10 NO CARRIER...71
 17.11 uugetty Still Doesn't Work..71
17.12 (The following subsections are in both the Serial and Modem HOWTOs).................................72
 17.13 My Serial Port is Physically There but Can't be Found..72
 17.14 Extremely Slow: Text appears on the screen slowly after long delays.......................................72
17.15 Somewhat Slow: I expected it to be a few times faster...73
 17.16 The Startup Screen Show Wrong IRQs for the Serial Ports...73
17.17 "Cannot open /dev/ttyS?: Permission denied"...74
17.18 "Operation not supported by device" for ttyS?..74

 Modem−HOWTO

v

Table of Contents
 Modem−HOWTO

17.19 "Cannot create lockfile. Sorry"..74
17.20 "Device /dev/ttyS? is locked."...74
 17.21 "/dev/tty? Device or resource busy"...74
17.22 "Input/output error" from setserial, stty, pppd, etc..75
17.23 "LSR safety check engaged"..75
17.24 Overrun errors on serial port..76
17.25 Modem doesn't pick up incoming calls..76
17.26 Port get characters only sporadically...76
17.27 Troubleshooting Tools...76
18. Flash Upgrades...76
19. Other Sources of Information..77
19.1 Misc...77
19.2 Books...77
19.3 HOWTOs...78
19.4 Usenet newsgroups..78
 19.5 Web Sites..78
 20. Appendix A: How Analog Modems Work (technical) (unfinished)..78
 20.1 Modulation Details...79

Intro to Modulation...79
Frequency Modulation..79
Amplitude Modulation..79
Phase Modulation..79
Combination Modulation..80

 20.2 56k Modems (V.90, V.92)..80
20.3 Full Duplex on One Circuit...82
20.4 Echo Cancellation..82
21. Appendix B: (Reserved for future use)..82
22. Appendix C: "baud" vs. "bps"..83
22.1 A simple example..83
22.2 Real examples..83
23. Appendix D: Terminal Server Connection..84
 24. Appendix E: Digital Modems: ISDN, DSL, RAS..84
24.1 Introduction..84
24.2 ISDN "Modems"..85
24.3 Digital Subscriber Line (DSL)...85
24.4 56k Digital−Modems...85
25. Appendix F: Leased Line Modems..85
26. Appendix G: Fax pixels (dots)...86
27. Appendix H: Antique Modems..86
27.1 Introduction..86
27.2 Old CCITT (ITU) and Bell Protocols..86
27.3 Historical Overview...86

Teletypes and dumb terminals...86
PCs and BBSs..87
The Internet...87
Speeds..87

27.4 Proprietary protocols, etc...87

 Modem−HOWTO

vi

Table of Contents
 Modem−HOWTO

 27.5 Autobauding..88
27.6 Modem−to−modem Speed...88
27.7 Modem−to−serial_port Speed..88

Same speed required..88
Equalizing speed..89
Use "CONNECT" message to set speed...89
Setting modem−to−modem speeds by the serial speed...90
Manual bauding...90
Unsupported speeds...90
Modern modems, speed buffering...90

27.8 Before AT Commands...90
27.9 Acoustic−Coupling..91
27.10 Data Compression and Error Correction..91

 Modem−HOWTO

vii

Modem−HOWTO

David S.Lawyer mailto:dave@lafn.org

v0.27, May 2003

Help with selecting, connecting, configuring, trouble−shooting, and understanding analog modems for a PC.
Limited coverage of V.90 digital modems.

1. Introduction

1.1 DSL, Cable, and ISDN Modems in other HOWTOs•
1.2 Also not covered: PCMCIA Modems, PPP•
1.3 Copyright, Disclaimer, Trademarks, & Credits•
1.4 Contacting the Author•
1.5 New Versions of this HOWTO•
1.6 New in Recent Versions•
1.7 What is a Modem ?•
1.8 Does My Computer Contain an Internal Modem ?•
1.9 Quick Install•

2. Modems for a Linux PC

2.1 External vs. Internal•
2.2 Is a Driver Needed ?•
2.3 External Modems•
2.4 Internal Modems•
2.5 Software−based Modems (winmodems, linmodems)•
2.6 PCI Modems•
2.7 AMR Modems•
2.8 USB Modems•
2.9 Which Internal Modems might not work with Linux•

3. Modem Pools

3.1 Introduction•
3.2 Analog Modem Pools, Multi−modem Cards•
3.3 Digital Modems, RAS•

4. Serial Port and Modem Basics

4.1 Modem Converts Digital to Analog (and conversely)•
4.2 What is a Serial Port ?•
4.3 IO Address & IRQ•
4.4 Names: ttyS0, ttyS1, etc.•
4.5 Interrupts•

 Modem−HOWTO 1

mailto:dave@lafn.org

4.6 Data Compression (by the Modem)•
4.7 Error Correction•
4.8 Data Flow (Speeds)•
4.9 Flow Control•
4.10 Data Flow Path; Buffers•
4.11 Modem Commands•
4.12 Serial Driver Module•

5. Configuring Overview

6. Locating the Serial Port: IO address, IRQs

6.1 IO & IRQ Overview•
6.2 PCI Bus Support•
6.3 Common mistakes made re low−level configuring•
6.4 IRQ & IO Address Must be Correct•
6.5 What is the IO Address and IRQ per the driver ?•
6.6 What is the IO Address & IRQ of my Serial Port Hardware?•
6.7 Choosing Serial IRQs•
6.8 Choosing Addresses −−Video card conflict with ttyS3•
6.9 Set IO Address & IRQ in the hardware (mostly for PnP)•
6.10 Giving the IRQ and IO Address to Setserial•

7. Configuring the Serial Driver (high−level) "stty"

7.1 Introduction•
7.2 Hardware flow control (RTS/CTS)•
7.3 Speed Settings•
7.4 Ignore CD Setting: clocal•
7.5 What is stty ?•

8. Modem Configuration (excluding serial port)

8.1 Finding Your Modem•
8.2 AT Commands•
8.3 Init Strings: Saving and Recalling•
8.4 Other AT Modem Commands•
8.5 Blacklisting•
8.6 What AT Commands are Now Set in my Modem?•
8.7 Modem States (or Modes)•

9. Serial Port Devices /dev/ttyS2, (or /dev/ttys/2) etc.

9.1 Devfs (The new Device File System)•
9.2 Serial Port Device Names & Numbers•
9.3 USB (Universal Serial Bus) Ports•
9.4 Link ttySN to /dev/modem•
9.5 cua Device Obsolete•

 Modem−HOWTO

5. Configuring Overview 2

10. Interesting Programs You Should Know About

10.1 What is setserial ?•
10.2 What is isapnp ?•
10.3 What is wvdialconf ?•

11. Trying Out Your Modem (Dialing Out)

11.1 Are You Ready to Dial Out ?•
11.2 Dialing Out with wvdial•
11.3 Dialing Out with Minicom•
11.4 Dialing Out with Kermit•

12. Dial−In

12.1 Dial−In Overview•
12.2 What Happens when Someone Dials In ?•
12.3 56k Doesn't Work for Dialin•
12.4 Getty•
12.5 Why "Manual" Answer is Best•
12.6 Dialing Out while Waiting for an Incoming Call•
12.7 Ending a Dial−in Call•
12.8 Dial−in Modem Configuration•
12.9 Callback•
12.10 Voice Mail•
12.11 Simple Manual Dial−In•
12.12 Complex GUI Dial−In, VNC•
12.13 Interoperability with MS Windows•

13. Uugetty for Dial−In (from the old Serial−HOWTO)

13.1 Installing getty_ps•
13.2 Setting up uugetty•
13.3 Customizing uugetty•

14. What Speed Should I Use with My Modem?

14.1 Speed and Data Compression•
14.2 Where do I Set Speed ?•
14.3 Can't Set a High Enough Speed•
14.4 Speed Table•

15. Communications Programs And Utilities

15.1 Minicom vs. Kermit•
15.2 List of Communication Software•
15.3 SLiRP and term•

 Modem−HOWTO

10. Interesting Programs You Should Know About 3

15.4 MS Windows•

16. Two Modems (Modem Doubling)

16.1 Introduction•
16.2 Modem Bonding•

17. Troubleshooting

17.1 My Modem is Physically There but Can't be Found•
17.2 "Modem is busy"•
17.3 "You are already online! Hang up first." (from minicom)•
17.4 I can't get near 56k on my 56k modem•
17.5 Uploading (downloading) files is broken/slow•
17.6 For Dial−in I Keep Getting "line NNN of inittab invalid"•
17.7 I Keep Getting: ``Id "S3" respawning too fast: disabled for 5 minutes''•
17.8 My Modem is Hosed after Someone Hangs Up, or uugetty doesn't respawn•
17.9 NO DIALTONE•
17.10 NO CARRIER•
17.11 uugetty Still Doesn't Work•
17.12 (The following subsections are in both the Serial and Modem HOWTOs)•
17.13 My Serial Port is Physically There but Can't be Found•
17.14 Extremely Slow: Text appears on the screen slowly after long delays•
17.15 Somewhat Slow: I expected it to be a few times faster•
17.16 The Startup Screen Show Wrong IRQs for the Serial Ports.•
17.17 "Cannot open /dev/ttyS?: Permission denied"•
17.18 "Operation not supported by device" for ttyS?•
17.19 "Cannot create lockfile. Sorry"•
17.20 "Device /dev/ttyS? is locked."•
17.21 "/dev/tty? Device or resource busy"•
17.22 "Input/output error" from setserial, stty, pppd, etc.•
17.23 "LSR safety check engaged"•
17.24 Overrun errors on serial port•
17.25 Modem doesn't pick up incoming calls•
17.26 Port get characters only sporadically•
17.27 Troubleshooting Tools•

18. Flash Upgrades

19. Other Sources of Information

19.1 Misc•
19.2 Books•
19.3 HOWTOs•
19.4 Usenet newsgroups•
19.5 Web Sites•

 Modem−HOWTO

16. Two Modems (Modem Doubling) 4

20. Appendix A: How Analog Modems Work (technical)
(unfinished)

20.1 Modulation Details•
20.2 56k Modems (V.90, V.92)•
20.3 Full Duplex on One Circuit•
20.4 Echo Cancellation•

21. Appendix B: (Reserved for future use)

22. Appendix C: "baud" vs. "bps"

22.1 A simple example•
22.2 Real examples•

23. Appendix D: Terminal Server Connection

24. Appendix E: Digital Modems: ISDN, DSL, RAS

24.1 Introduction•
24.2 ISDN "Modems"•
24.3 Digital Subscriber Line (DSL)•
24.4 56k Digital−Modems•

25. Appendix F: Leased Line Modems

26. Appendix G: Fax pixels (dots)

27. Appendix H: Antique Modems

27.1 Introduction•
27.2 Old CCITT (ITU) and Bell Protocols•
27.3 Historical Overview•
27.4 Proprietary protocols, etc.•
27.5 Autobauding•
27.6 Modem−to−modem Speed•
27.7 Modem−to−serial_port Speed•
27.8 Before AT Commands•
27.9 Acoustic−Coupling•
27.10 Data Compression and Error Correction•

1. Introduction

 Modem−HOWTO

20. Appendix A: How Analog Modems Work (technical) (unfinished) 5

1.1 DSL, Cable, and ISDN Modems in other HOWTOs

This HOWTO covers conventional analog modems for PCs on the ISA, PCI, or USB buses. USB coverage is
weak. For other types of modems see:

DSL−HOWTO (formerly ADSL mini−howto)•
ADSL−Bandwidth−Management−HOWTO•
Cable−Modems−HOWTO (same as Cable Modem Providers HOWTO)•
SuSE ISDN Howto (not a LDP Howto)
http://brenner.chemietechnik.uni−dortmund.de/doc/sdb/en/html/isdn.html

•

http://public.swbell.net/ISDN/overview.html tutorial on ISDN•
ISDN docs in the kernel documentation subdirectory: "isdn".•
http://www.isdn4linux.de (1998, old)•
Appendix D: Other Types of Modems•

1.2 Also not covered: PCMCIA Modems, PPP

For modems on the PCMCIA bus see the PCMCIA−HOWTO: PCMCIA serial and modem devices. This
HOWTO also doesn't cover PPP (used to connect to the Internet via a modem) or communication programs.
Except it does show how to use communication programs to test that your modem works OK and can make
phone calls. If you want to use a modem to connect to the Internet then you need to set up PPP. There's a lot
of documentation for PPP (including a PPP−HOWTO). More documentation should be found in /usr/doc/ppp,
/usr/share/doc/ppp or the like.

1.3 Copyright, Disclaimer, Trademarks, & Credits

Copyright

Copyright (c) 1998−2003 by David S. Lawyer mailto:dave@lafn.org

Please freely copy and distribute (sell or give away) this document in any format. Send any corrections and
comments to the document maintainer. You may create a derivative work and distribute it provided that you:

If it's not a translation: Email a copy of your derivative work (in a format LDP accepts) to the
author(s) and maintainer (could be the same person). If you don't get a response then email the LDP
(Linux Documentation Project): submit@en.tldp.org.

1.

License the derivative work in the spirit of this license or use GPL. Include a copyright notice and at
least a pointer to the license used.

2.

Give due credit to previous authors and major contributors.3.

If you're considering making a derived work other than a translation, it's requested that you discuss your plans
with the current maintainer.

Disclaimer

While I haven't intentionally tried to mislead you, there are likely a number of errors in this document. Please
let me know about them. Since this is free documentation, it should be obvious that I cannot be held legally
responsible for any errors.

 Modem−HOWTO

1.1 DSL, Cable, and ISDN Modems in other HOWTOs 6

http://brenner.chemietechnik.uni-dortmund.de/doc/sdb/en/html/isdn.html
http://public.swbell.net/ISDN/overview.html
http://www.isdn4linux.de
mailto:dave@lafn.org

Trademarks.

Any brand names (starts with a capital letter such as MS Windows) should be assumed to be a trademark).
Such trademarks belong to their respective owners.

"Hayes" is a trademark of Microcomputer Products Inc. I use "winmodem" to mean any modem which
requires MS−Windows and not in the trademark sense. All other trademarks belong to their respective
owners.

Credits

The following is only a rough approximation of how this this document (as of 2000) was created: About 1/4
of the material here was lifted directly from Serial−HOWTO v. 1.11 (1997) by Greg Hankins.
mailto:gregh@twoguys.org (with his permission). About another 1/4 was taken from that Serial−HOWTO and
revised. The remaining 1/2 is newly created by the new author: David S. Lawyer
mailto:dave@lafn.org.

1.4 Contacting the Author

Since I don't follow the many different brands/models of modems please don't email me with questions about
them (or suggestions of which one to buy). If you are interested in a certain model (to find out if it works
under Linux, etc.) see the huge list at Web Sites. Also, please don't ask me how to configure a modem unless
you've looked over this HOWTO and still can't do it. I've no personal experience with software−based
modems.

Please let me know of any errors in facts, opinions, logic, spelling, grammar, clarity, links, etc. But first, if the
date is over a month or two old, check to see that you have the latest version. Please send me any other info
that you think belongs in this document.

1.5 New Versions of this HOWTO

New versions of this Modem−HOWTO should come out every few months. Your problem might be solved in
the latest version. It will be available to browse and/or download at LDP mirror sites. For a list of such sites
see: http://www.tldp.org/mirrors.html If you only want to quickly compare the date of this the version v0.27,
May 2003 with the date of the latest version go to: http://www.tldp.org/HOWTO/Modem−HOWTO.html

1.6 New in Recent Versions

For a full revision history going back to the first version see the source file (in linuxdoc format) at
http://www.ibiblio.org/pub/linux/docs/HOWTO/other−formats/sgml/Modem−HOWTO.sgml.gz.

v0.27 May 2003: "Flow control" improved•
v0.26 March 2003: USB clarity improved, v.92 modem "on hold" supported?, 3Com AT codes•
v0.25 September 2002: Must restart minicom after configuring it unless you used the −s option. HCF
is not an all−software modem as was incorrectly claimed. Better clarity for "Quick Install" and 56k
modems. Does my PC have a modem?

•

v0.24 June 2002: new callback link, "You are already online" error, fixed several typos reported by
Francesco Ronconi

•

 Modem−HOWTO

Trademarks. 7

mailto:gregh@twoguys.org
mailto:dave@lafn.org
http://www.tldp.org/mirrors.html
http://www.tldp.org/HOWTO/Modem-HOWTO.html
http://www.ibiblio.org/pub/linux/docs/HOWTO/other-formats/sgml/Modem-HOWTO.sgml.gz

1.7 What is a Modem ?

A modem is a device that lets one send digital signals over an ordinary telephone line not designed for digital
signals. If telephone lines were all digital then you wouldn't need a modem. It permits your computer to
connect to and communicate with the rest of the world. When you use a modem, you normally use a
communication program or web browser to utilize the modem and dial−out on a telephone line. Advanced
modem users can set things up so that others may phone in to them and use their computer. This is called
"dial−in".

There are four basic types of modems for a PC: external, USB, internal and built−in. The external and USB
set on your desk outside the PC while the other two types are not visible since they're inside the PC.
Sometimes the USB type is called "USB external". The external serial modem plugs into a connector on the
back of the PC known as a "serial port". The USB modem plugs into the USB bus cable. See USB Modems.
The internal modem is a card that is inserted inside the computer. The built−in modem is part of the
motherboard and is thus built into the computer. It's is just like an internal modem except it can't be removed
or replaced. As of 2001, built−in modems are primarily for laptops. What is said in this HOWTO regarding
internal modems will generally apply also to built−in modems.

For a more detailed comparison see External vs. Internal. When you get an internal or, built−in, modem, you
also get a dedicated serial port (which can only be used with the modem and not with anything else such as
another modem or a printer). In Linux, the serial ports are named ttyS0, ttyS1, etc. (usually corresponding
respectively to COM1, COM2, etc. in Dos/Windows). For the new devfs they are all in the /dev/ttys/ directory
and named 0, 1, etc. See Modem & Serial Port Basics for more details on modems and serial ports. With a
USB modem, the driver simulates a serial port at say /dev/usb/asm/0.

Modems usually include the ability to send Faxes (Fax Modems). See Fax for a list of fax software. "Voice"
modems can work like an automatic answering machine and handle voicemail. See Voicemail Software.

The v.92 protocol can put the modem "on hold" when someone makes an ordinary voice call to your
telephone, provided that you have "call waiting" from your telephone company. Thus you can get a phone call
while online. As of Jan. 2003 Linux doesn't seem to support it. If this is the latest version of this HOWTO, let
me know about any Linux support for it. Some linmodem drivers may support it (but what if you have a
hardware modem ?).

1.8 Does My Computer Contain an Internal Modem ?

Internal modems usually have a pair of modular telephone jacks on the back of the computer. They should be
right next to each other and look like a jack on the wall of a house where a telephone plugs in. Network cards
also have modular jacks, but they are seldom in pairs and are slightly wider since they normally have 8 pins.
Internal DSL "modems" exist and also have telephone jacks, but I think they are not very common (most are
external) as of 2002.

1.9 Quick Install

External Modem Install

With a straight−thru or modem cable, connect the modem to an unused serial port on the PC. Make sure you
know the name of the serial port: in most cases COM1 is ttyS0, COM2 is ttyS1, etc. You may need to check
the BIOS setup menu to determine this. Plug in the power cord to provide power to the modem. See All

 Modem−HOWTO

 1.7 What is a Modem ? 8

Modems for further instructions.

Internal Modems (ISA, PCI and AMR)

The first thing to do is to make sure that the modem will work under Linux since (as of 2002) many modems
don't. See modem list. If the modem is both PnP and directly supported by the serial driver (kernel 2.4 +) then
there is no configuring for you to do since the Linux serial driver will configure it.

To physically install a modem card, remove the cover of the PC by /removing some screws (perhaps screw
size 6−32 in the U.S.). Find a matching vacant slot for it next to the other adapter cards. Before inserting the
card in the slot, remove a small cover plate on the back of the PC so that the telephone jacks on the card will
be accessible from the rear of the PC. Then carefully align the card with the slot and push the card all the way
down into the slot. Attach the card with a mounting screw (usually 3mm, .5mm pitch −−don't use the wrong
size).

If you have a modem that is not a winmodem (see Software−based Modems (winmodems)) the serial driver
may configure it for you and you have nothing to do. This should be noted in the boot−time messages (use
dmesg to see them or shift−page−up after they have flashed by).

Internal Modems: Manual configuration

But if it didn't get automatically assigned a port ttySx and an IRQ (or you need to change these values) then
you need to configure it yourself. You first need to decide which ttySx (or ttys/x) to assign it to. Pick a ttySx
that is not already in use by other serial ports. Then you have the problem of setting an IRQ number and IO
address. For PnP modems: If the BIOS has already set these in the physical device (which a PnP BIOS will do
if it thinks you don't have a PnP OS) then you need to determine the IRQ and IO address and then tell this to
"setserial".

In other cases you may have some choice of IRQs and IO addresses (including the case where you are able to
change what the BIOS has set). See Choosing Serial IRQs and Choosing Addresses. For ISA modems there
are standard IO addresses to use (corresponding to the ttySx). For example you may find it feasible to use
/dev/ttyS2 at IO address 0x3e8 and IRQ 11. PCI modems seem to use different IO addresses so as not to
conflict with ISA modems.

ISA Modems: What IOs and IRQs may be used?

For old modems with jumpers look at the manual (or jumpers if they say). If the BIOS has already configured
the ISA modem then "pnpdump −−dumpregs" should show it. If you need to set or change them use "isapnp".
Use the "pnpdump" to see what changes are possible.

Both PCI and ISA: Use setserial to tell the serial driver

You must find the file where "setserial" is run at boot−time and add a line something like: "setserial
/dev/ttyS2 irq 5 port 0x0b8". For setserial v2.15 and later the results of running "setserial" on the command
line may (or may not) be saved to /etc/serial.conf so that it runs each time you boot. See What is Setserial for
more info. See the next subsection All Modems for further instructions on quick installation.

 Modem−HOWTO

Internal Modems (ISA, PCI and AMR) 9

http://www.idir.net/~gromitkc/winmodem.html

Use MS Windows to set the BIOS (A last resort method)

If you are using the BIOS to configure you may attempt to use MS Windows9x to "force" the BIOS to set a
certain IRQ and/or IO. It can set them into the PnP BIOS's flash memory where they will be used to configure
for Linux as well as Windows. See "Plug−and−Play−HOWTO and search for "forced" (occurs in several
places). For Windows3.x you can do the same thing using the ICU under Windows 3.x. A few modems have a
way to disable PnP in the modem hardware using software (under Windows) that came with the modem.

All Modems

Plug the modem into a telephone line. Then configure a communication program such as minicom or a ppp
program (such as wvdial). Set the serial port speed to a baud rate a few times higher than the bit rate of your
modem. See Speed Table for more details on the "best" speeds to use. Tell it the full name of your serial port
such as /dev/ttyS1 (or /dev/ttys/1). Set hardware flow control (RTS/CTS).

Minicom is the easiest to set up and to use to test your modem. But if you are lucky you may get ppp to work
the first time and not need to bother with minicom. With minicom you may check to see if your modem is
there (and ready to dial): Once you've set up minicom, type the command: AT, hit enter and you should see an
"OK" response which comes direct from the modem. See Dialing Out with Minicom.

2. Modems for a Linux PC

2.1 External vs. Internal

A modem for a PC may be either internal or external. The internal one is installed inside of your PC (you
must remove screws, etc. to install it) and the external one just plugs into a serial port connector on a PC.
Internal modems are less expensive, are less likely to to suffer data loss due to buffer overrun, usually use less
electricity, and use up no space on your desk.

External modems are usually easier to install and usually require less configuration. They have lights which
may give you a clue as to what is happening and aid in troubleshooting. The fact that the serial port and
modem can be physically separated also aids in troubleshooting. External modems are easy to move to
another computer. If you need to turn the power off to reset your modem (this is seldom necessary) then with
an external you don't have to power down the entire PC.

Unfortunately most external modems have no switch to turn off the power supply when not in use and thus are
likely to consume a little electricity even when turned off (unless you unplug the power supply from the wall).
Each watt they draw usually costs you over $1/yr. Another possible disadvantage of an external is that you
will be forced to use an existing serial port which may not support a speed of over 115,200 bps (although as of
late 2000 most new internal modems don't either −−but some do). For details Can't Set a High Enough Speed

Internal modems present a special problem for Linux, but will work just as well as external modems provided
you avoid the ones that will work only for MS Windows. Configuring them ranges from very easy
(automatically) to difficult depending on both the modem, your skills, and how easy it is to find info about
your modem −−info that is not all in this HOWTO. Some of the modems will work only under MS Windows
due to lack of Linux modem drivers (for software modems). If you buy a new one that you're not sure will
work under Linux, try to get an agreement that you can return it for a refund if it doesn't work out.

While most new modems are plug−and−play you have various ways to deal with the PnP configuring:

 Modem−HOWTO

Use MS Windows to set the BIOS (A last resort method) 10

The serial driver does it all for you (more likely for a PCI modem)•
Use the "isapnp" program•
Let a PnP BIOS do the configuring•

The last 2 items of the above have shortcomings. Isapnp documentation is difficult to understand although
reading the Plug−and−Play−HOWTO (long) will aid in understanding it. If you want the PnP BIOS to do the
configuring, all you need to do is to make sure that it knows that you don't have a PnP operating system. But it
may not do it correctly and you may need to find out what it's done see What is set in my serial port
hardware?.

Many Linux users still say that it's a lot simpler just to get an external modem and plug it in. But if you get the
right internal modem it may be just as easy.

2.2 Is a Driver Needed ?

Hardware modems (including all serial external modems) don't really need any modem driver. But any
software modem (winmodem, linmodem) must have a modem driver (if it exists for Linux). The serial port
the modem resides on does need a driver and it's supplied either as a Linux serial module or compiled into the
kernel. Any serial driver for a PCI Modem should install automatically since they are detected by system
software.

Software modems require software to run them and obviously do need a driver. The drivers for MS Windows
are *.exe programs which will not run under Linux. So you must use a Linux driver (if it exists). See
Software−based Modems (winmodems, linmodems)

2.3 External Modems

PnP External Modems

Many external modems are labeled "Plug and Play" (PnP) but they should all work fine as non−PnP modems.
While the serial port itself may need to be configured (IRQ number and IO address) unless the default
configuration is OK, an external modem uses no such IRQ/IO configuration. You just plug the modem into
the serial port.

How can an external modem be called PnP since it can't be configured by PnP? Well, it has a special PnP
identification built into it that can be read (thru the serial port) by a PnP operating system. Such an operating
system would then know that you have a modem on a certain port and would also know the id number. If it's a
software modem, it could try to locate a driver for it. It could also tell application programs what port your
modem is on. (such as /dev/ttyS2 or COM3). But since you don't have such a PnP operating system you may
need to configure your application program manually by giving it the /dev id (such as /dev/ttyS2). Some
programs can probe for a modem on various ports.

Cabling & Installation

Connecting an external modem is simple compared to connecting most other devices to a serial port that
require various types of "null modem" cables (which will not work for modems). Modems use straight
through cable, with no pins crossed over. Most computer stores should have this. Make sure you get the
correct gender and number of pins. Hook up your modem to one of your serial ports. If you are willing to
accept the default IRQ and IO address of the port you connect it to, then you are ready to start your

 Modem−HOWTO

2.2 Is a Driver Needed ? 11

communication program and configure the modem itself.

What the Lights (LED's) Mean (for some external modems)

TM Test Modem•
AA Auto Answer (If on, your modem will answer an incoming call)•
RD Receive Data line = RxD•
SD Send Data line = TxD•
TR data Terminal Ready = DTR (set by your PC)•
RI Ring Indicator (If on, someone is "ringing" your modem)•
OH Off Hook (If off, your modem has hung up the phone line)•
MR Modem Ready = DSR ??•
EC Error Correction•
DC Data Compression•
HS High Speed (for this modem)•

2.4 Internal Modems

An internal modem is installed in a PC by taking off the cover of the PC and inserting the modem card into a
vacant slot on the motherboard. There are modems for PCI slots, other modems for the older ISA slots, and
ARM software "modems" for the new small AMR slot. Some new PCs don't have any ISA slots. Only some
newer PCs will have ARM slots. While external modems plug into the serial port (via a short cable) the
internal modems have the serial port built into the modem. In other words, the modem card is both a serial
port and a modem.

Setting the IO address and IRQ for a serial port was formerly done by jumpers on the card. These are little
black rectangular "cubes" about 5x4x2 mm in size which push in over pins on the card. Plug−and−Play
modems (actually the serial port part of the modems) don't use jumpers for setting these but instead are
configured by sending configuration commands to them over the bus inside the computer. Such configuration
commands can be sent by a PnP BIOS, by the isapnp program (for the ISA bus only), by setpci (for the PCI
bus), or by newer serial device drivers for certain modems. Under Linux you may have a choice of how to
configure the ones that don't get io−irq configured by the serial driver.

ISA bus: Use "isapnp" which may be run automatically at every boot−time1.
Let a PnP BIOS do it, and then maybe tell setserial the IO and IRQ2.
PCI bus: Use lspci −vv to look at it and setpci to configure.3.

See Quick Install for more details, especially for the PCI bus.

2.5 Software−based Modems (winmodems, linmodems)

Introduction to software modems (winmodems)

Software modems turn over some (or even almost all) of the work of the modem to the main processor (CPU)
chip of your computer (such as a Pentium chip). This requires special software (a modem driver) to do the job.
Until late 1999, such software was released only for MS Windows and wouldn't work with Linux. Even worse
was that the maker of the modem kept the interface to the modem secret so that no one could write a Linux
driver for it (even though a few volunteers were willing to write Linux drivers).

 Modem−HOWTO

What the Lights (LED's) Mean (for some external modems) 12

But things have improved some since then so that today (late 2001) many such modems do have a linux
driver. There is no standard interface so that different brands/models of software−modems need different
drivers (unless the different brands/models happen to use the same chipset internally).

Another name for a software modem (used by MS) is "driver−based modem". The conventional
hardware−based modem (that works with Linux) doesn't need a modem driver (but does use the Linux serial
driver) After about mid−1998 most new internal modems were software modems.

Software modems fall into 2 categories: linmodems and winmodems. Winmodems will only work under MS
Windows. Linmodems will work under Linux (but formerly were mostly winmodems so some still call them
"winmodems"). The term "Winmodem" is also a trademark for a certain model of "winmodem" but that's not
the meaning of it in this document.

Linmodems

In late 1999, two software−based modems appeared that could work under Linux and were thus called
"linmodems". Lucent Technologies (LT) unofficially released a Linux binary−only code to support most of its
PCI modems. PC−TEL (includes "Zoltrix") introduced a new software−based modem for Linux. After that,
interest increased for getting winmodems to work under linux. There is a GPL'ed driver for Intel's (Modem
Silicon Operations) MD563x HaM chipset (nee Ambient division of Cirrus Logic). As of mid−2001 there are
also drivers for: Conexant HSF and HCF, Motorola SM56, ESS (ISA only), and IBM's Mwave for Thinkpads
600+.

What percent of software modems now (2001) work under Linux? Well, there's a number of modem chips not
supported: Lucent/Agere ARM (Scorpio), 3COM/US Robotics, some SmartLink (3 different chipsets),
Ambient HSP, and possibly others. But there might be support for some of these by the time you read this. So
it seems that over half the software modem chips are now supported (as of late 2001).

Be warned in advance that determining if your modem is a linmodem may or may not be easy. You may need
to first find out what chipset you have and who makes it. Just knowing the brand and model number of your
modem may not be sufficient. There are complex ways to find this out using say "lspci" (more than once) and
then looking up the chip maker using the long modem number. This requires checking a database or searching
the Internet. It's not always simple. It could happen that you will put a fair amount of effort into this only to
get the bad news that your modem isn't supported. See Linmodem−HOWTO for more details.

Linmodem sites and documentation

Linmodem−HOWTO•
Winmodems−and−Linux−HOWTO (not as well written as Linmodem−HOWTO)•
http://linmodems.org is a project to turn winmodems into linmodems. Has a mailing list.•
Conexant+Rockwell−modem−HOWTO•
modem list. Has links to linmodem info.•
PCTel−HSP−MicroModem−Configuration−mini−HOWTO•

Software−based modem types

There are two basic types of software modems. In one type the software does almost all of the work. The other
is where the software only does the "control" operations (which is everything except processing the digital
waveshapes −−to be explained later). Since the hardware doesn't do the control it's called a "controllerless"
modem. The first type is an all−software modem (sometimes just called a software modem).

 Modem−HOWTO

Linmodems 13

http://linmodems.org
http://www.idir.net/~gromitkc/winmodem.html

For both of these types there must be analog hardware in the modem to generate an electrical waveshape to
send out the phone line. It's generated from a digital signal (which is sort of a "digital waveshape"). It's
something like the digital electronics creates a lot of discrete points on graph paper and then the modem draws
a smooth curve thru them. There must also be hardware to convert the incoming waveshape to digital. This is
just analog−to−digital conversion (and conversely). It's done by a codec (coder−decoder).

Then this digital waveshape must be converted to a data byte stream. This is known as demodulation, while
turning data bytes into a digital waveshape is known as modulation. The modem can't just send an incoming
data byte stream to the PC but must first do decompression, error correction, and convert from serial to the
parallel bus of the computer. Likewise for an outgoing data byte stream.

The difference between the two types of software−based modems is where the digital modulation takes place.
In the all−software modem this modulation is done in the CPU using a Host Signal Processor (HSP). In the
controllerless modem it's done in the modem but all other digital work is done by the CPU. This other digital
work consists of dealing with AT−commands, data compression, error correction, and simulating a serial port.
In the all−software modem, there are still two items handled by hardware: the A/D conversion of waveshapes
by the codec and echo cancellation.

Is this modem a software modem?

How do you determine if an internal modem is a software modem? First see if the name, description of it, or
even the name of the MS Windows driver for it indicates it's a software modem: HSP (Host Signal Processor)
, HCF (Host Controlled Family), HSF (Host Signal Family), controllerless, host−controlled, host−based, and
soft−... modem. If it's one of these modem it will only work for the cases where a Linux driver is available.
Since software modems cost less, a low price is a clue that it's a software modem.

If you don't know the model of the modem and you also have Windows on your Linux PC, click on the
"Modem" icon in the "Control Panel". Then check out the modem list (see Web Sites. If the above doesn't
work (or isn't feasible), you can look at the package it came in (or a manual). Read the section on the package
that says something like "Minimum System Requirements" or just "System Requirements".

A hardware modem will work fine on old CPUs (such as the 386 or better). So if it requires a modern CPU
(such as a Pentium or other "high speed" CPU of say over 150 MHz) this is a clue that it's a all−software
modem. If it only requires a 486 CPU (or better) then it's likely a host−controlled software modem. Saying
that it only works with Windows is also bad news. However, even in this case there may be a Linux driver for
it.

Otherwise, it may be a hardware modem if it fails to state explicitly that you must have Windows. By saying
it's "designed for Windows" it may only mean that it fully supports Microsoft's plug−and−play which is OK
since Linux uses the same plug−and−play specs (but it's harder to configure under Linux). Being "designed
for Windows" thus gives no clue as to whether or not it will work under Linux. You might check the Website
of the manufacturer or inquire via email. Some manufacturers are specifically stating that certain models work
under Linux. Sometimes they are linmodems that require you to obtain and install a certain linmodem driver.

Should I get a software modem?

Only if you know there is a Linux driver for it that works OK. Besides the problems of getting a driver, what
are the pros and cons of software modems? Since the software modem uses the CPU to do some (or all) of its
work, the software modem requires less on−board electronics and thus costs less. At the same time, the CPU
work load is increased by the modem which may result in slower operation.

 Modem−HOWTO

Is this modem a software modem? 14

The percentage of loading of the CPU by the modem depends on both what CPU you have and whether or not
it's an all−software modem. For a modern CPU and a modem that only uses the CPU as a controller, there's
little loss of performance. Even if it's an all−software modem, you will not suffer a loss of performance if
there are no other CPU−intensive tasks are running at the same time. Of course, when you're not using the
software modem there is no degradation in performance at all.

Is the modem cost savings worth it? In many cases yes, especially if you don't use the modem much and/or are
not running any other CPU intensive tasks when the modem is in use. The savings in modem cost could be
used for a better CPU which would speed things up a little. But the on−board electronics of a modem can do
the job more efficiently than a general purpose CPU (except that it's not efficient at all when it's not in use).
So if you use the modem a lot it's probably better to avoid all−software modems (and then you can use a less
powerful CPU :−).

2.6 PCI Modems

A PCI modem card is one which inserts into a PCI−bus slot on the motherboard of a PC. While many PCI
winmodems will not work under Linux (no driver available) other PCI modems will work under Linux. The
Linux serial driver has been modified to support certain PCI hardware modem cards (but not
winmodems/linmodems). If it's a linmodem, it will work only if you install a certain linmodem driver. If the
Linux serial driver supports your hardware modem then the driver will set up the PnP configuration for you.
See PCI Bus Support Underway. If no special support for your PCI hardware modem is in the Linux serial
driver it may still work OK but you have to do some work to configure it.

2.7 AMR Modems

These are all winmodems that insert into a special AMR (Audio Modem Riser) slot on the motherboard.
Audio cards are sometimes used in this slot. The slot's main use is for HSF type modems where the CPU does
almost all of the work. This results in a small modem card and thus a short AMR slot. Such a "modem" is
actually little more than a codec which transforms digital signals representing an analog voltage wave into the
analog wave itself (and conversely). Linux supports at least one of them.

2.8 USB Modems

USB = Universal Serial Bus. Some USB modems work with Linux and some don't. Linux has support for
modems that conform to the USB Communication Device Class Abstract Control Model (= USB CDC ACM).
There's a module for ACM named acm.o. See the /usb/acm.txt document in the kernel documentation
directory (/usr/share/doc/kernel−doc−2.4.x in Debian, perhaps /usr/doc/kernel... in some distributions). The
ACM "serial port" for the first (0th) such modem is: /dev/usb/acm/0 or possibly /dev/usb/ttyACM0. This
should be the case regardless of whether or not you use the new "device file system". It's not really a serial
port, but the driver makes it look like a serial port to software which uses the modem.

2.9 Which Internal Modems might not work with Linux

Software−based Modems (winmodems, linmodems) Only about half have a Linux driver available.•
MWave and DSP Modems might work, but only if you first start Windows/Dos each time you power
on your PC

•

Modems with RPI (Rockwell) drivers work but with reduced performance•

 Modem−HOWTO

 2.6 PCI Modems 15

MWave and some DSP Modems

Note that there's now a Linux driver for the ACP (Mwave) modem used in IBM Thinkpads 600+. See the
mini−HOWTO: ACP−Modem.

While hardware modems used use DSPs (Digital Signal Processors) some of these DSPs are programmed by a
driver which must be downloaded from the hard disk to the DSPs memory just before using the modem.
Unfortunately, such downloading is normally done by Dos/Windows programs (which doesn't work for
Linux). But there has been substantial success in getting some of these modems to work with Linux. For
example, there is a Linux driver available to run a Lucent (DSP) modem.

Ordinary modems that work fine with Linux (without needing a driver for the modem) often have a DSP too
(and may mention this on the packaging), but the program that runs the DSP is stored inside the modem.
These work fine under Linux. An example of a DSP modem that has problems working under Linux is the old
IBM's Aptiva MWAVE.

One way to get some DSP modems to work with Linux is to boot from DOS (if you have it on your Linux
PC). You first install the driver under DOS (using DOS and not Window drivers). Then start Dos/Windows
and start the driver for the modem so as to program the DSP. Then without turning off the computer, start
Linux.

One may write a "batch" file (actually a script) to do this. Here is an example but you must modify it to suit
your situation.

rem mwave is a batch file supplied by the modem maker
call c:\mww\dll\mwave start
rem loadlin.exe is a DOS program that will boot Linux from DOS (See
rem Config−HOWTO).
c:\linux\loadlin f:\vmlinuz root=/dev/hda3 ro

One may create an icon for the Window's desktop which points to such a batch file and set the icon properties
to "Run in MSDOS Mode". Then by clicking on this icon one sets up the modem and goes to Linux. Another
possible way to boot Linux from DOS is to press CTRL−ALT−DEL and tell it to reboot (assuming that you
have set things up so that you can boot directly into Linux). The modem remains on the same com port (same
IO address) that it used under DOS.

The Newcom ifx modem needs a small kernel patch to work correctly since its simulation of a serial port is
non−standard. The patch and other info for using this modem with Linux is at
http://quinine.pharmacy.ohio−state.edu/~ejolson/linux/newcom.html.

Rockwell (RPI) Drivers

Some older Rockwell chips need Rockwell RPI (Rockwell Protocol Interface) drivers for compression and
error correction. They can still be used with Linux even though the driver software works only under MS
Windows. This is because the MS Windows software (which you don't have) does only compression and error
correction. If you are willing to operate the modem without compression and error correction then it's feasible
to use it with Linux. To do this you will need to disable RPI by sending the modem (via the initialization
string) a "RPI disable" command each time you power on your modem. On my old modem this command was
+H0. Not having data compression available makes it slower to get webpages but is just as fast when
downloading files that are already compressed.

 Modem−HOWTO

 MWave and some DSP Modems 16

http://quinine.pharmacy.ohio-state.edu/~ejolson/linux/newcom.html

3. Modem Pools

3.1 Introduction

These are multiple modems which might be used by an ISP or by an organization that has a number of phone
lines for dialing in and out. There are two types of modem pools: analog and digital. An ISP will use digital so
that they can support 56k (V.90, V.92) modems at near maximum speed.

A modem pool could be a number of modems on the same card (such as an analog multi−port modem card) or
many modems in an external chassis (something like an external modem). The modems may be analog
modems similar to modems used for home/office PCs (can't send above 33.6k even if they are "56k
modems"). They also could be "digital modems" which can send at nearly 56k (if you have a good line). The
"digital modems" require a digital connection to the telephone line and don't use any serial ports at all. All of
these modem pools will require that you install special drivers for them.

3.2 Analog Modem Pools, Multi−modem Cards

A "multimodem card" is short for "multiport modem card". Some put a hyphen after "multi": multi−modem or
multi−port. An analog modem pool is just many analog modems (the common home/office modem) provided
either on an internal plug−in card or in an external chassis. Each modem comes with a built−in serial port.
There is usually a system of sharing interrupts or of handling interrupts by their own electronics, thus
removing much of this burden from the CPU. Note that these modems are not "digital modems" and will thus
not be able to use 56k for people who dial−in.

Here is a list of some companies that make analog multiport modem cards which plug into slots in a PC. 8
modems/card is common. The cards listed claim to work with Linux and the websites should point you to a
driver for them.

Multi−modem Cards (analog, not digital):

Equinox SST Multi−modem. PCI, 56k, 4 or 8 ports
http://www.equinox.com/product/multi−modem.htm

•

MultiModemISI by Multi−Tech Systems. 56k or 33.6k, PCI, 4 or 8 ports. ISDN/56k hybrids.
http://www.multitech.com/PRODUCTS/MultiModemISI/

•

PCI−RAS cards by Perle. 56k, 4 or 8 ports.
http://www.perle.com/solutions/app_notes/multi_modem/pci_ras_fax.html

•

RocketModem by Comtrol. ISA 33.6k, 4 or 8 port.
http://www.comtrol.com/sales/specs/rm.htm

•

RocketModem II by Comtrol. PCI 56k, 4 or 6 port
http://www.comtrol.com/sales/specs/rmii.htm

•

RockForce. 56k, 2 or 4 port Two port V.92/V.44
http://www.mainpine.com/ #RockForce+ Two port V.90 (www.mainpine.com/prodrockplus.html)
#RockForceDUO Two port V.92/V.44 (www.mainpine.com/prodduo.html) #RockForceQUATRO
Four port V.92/V.44 (www.mainpine.com/prodquatro.html) #RockForceDUO+ Two port
V.92/V.44/V.34 SuperG3 Fax = #(www.mainpine.com/prodduoplus.html) #RockForceQUATRO+
Four port V.92/V.44/V.34 SuperG3 Fax = #(www.mainpine.com/prodquatroplus.html) #

•

Multi−modem communication adapters by Digi.
http:/www.dgii.com/solutions/mmcommadapters/index.html

•

 Modem−HOWTO

3. Modem Pools 17

http://www.equinox.com/product/multi-modem.htm
http://www.multitech.com/PRODUCTS/MultiModemISI/
http://www.perle.com/solutions/app_notes/multi_modem/pci_ras_fax.html
http://www.comtrol.com/sales/specs/rm.htm
http://www.comtrol.com/sales/specs/rmii.htm
http://www.mainpine.com/
http:/www.dgii.com/solutions/mmcommadapters/index.html

3.3 Digital Modems, RAS

"digital modems" are much different than the analog modems that most people use in their PCs. They require
a digital connection to the telephone line and don't use serial ports for the interface to the computer. Instead,
they interface directly to a computer bus via a special card(s) (which may also contain the "digital modems").
They are able to send at near 56k, something no analog modem can do. They are often a component of
"remote access servers" (RASs) or "digital modem pools"

The cables from the phone company that carry digital signals have been designed for high bandwidth so that
the same cable carries multiple telephone calls. It's done by "time−division multiplexing". A single phone call
in a cable is carried on two different channels, one for each direction. So the RAS must connect each such
channel−pair to the appropriate "digital modem" that services that phone call. Such tasks are done by what is
sometimes called a "... concentrator".

Now the digital signal received by a "digital modem" may really represent an analog signal which has been
sent to it by an analog modem. One way to deal with it would be to convert it to an analog signal and then put
that thru an analog modem to get the digital data sent by the analog modem. But why do all this work? Since
the signal is already in digital form, why not process it digitally? That's how it's done. The digital signal is
processed and converted to another digital stream of bytes which represents data bytes sent by the analog
modem. A "digital signal processor" (DSP) is commonly used for this task. A CPU could also handle it but it
would be heavily loaded.

Likewise, a "digital modem" must handle sending digital signals in the opposite direction from a RAS to a
digital telephone line. Thus it only makes digital−to−digital conversions and doesn't deal in analog at all. It
thus is not really a modem at all since it doesn't modulate any analog carrier. So the name "digital modem" is
a misnomer but it does do the job formerly done by modems. Thus some "digital modems" call themselves
"digital signal processors", or "remote access servers", etc. and may not even mention the word "modem".

Such a RAS system may be a stand−alone proprietary server, a chassis containing digital modems that
connects to a PC via a special interface card, or just a card itself. Digi calls one such card a "remote access
server concentrator adapter". One incomplete description of what is needed to become an ISP is: See What do
I need to be an ISP?. Cyclades promotes their own products here so please do comparison shopping before
buying anything.

4. Serial Port and Modem Basics

You don't have to understand the basics to use and install a modem. But understanding it may help to
determine what is wrong if you run into problems. After reading this section, if you want to understand it even
better you may want to see How Modems Work in this document (not yet complete). More details on the
serial port (including much of this section) will be found in Serial−HOWTO.

4.1 Modem Converts Digital to Analog (and conversely)

Most all telephone main lines are digital already but the lines leading to your house (or business) are usually
analog which means that they were designed to transmit a voltage wave which is an exact replica of the sound
wave coming out of your mouth. Such a voltage wave is called "analog". If viewed on an oscilloscope it looks
like a sine wave of varying frequency and amplitude. A digital signal is like a square wave. For example 3 v
(volts) might be a 1−bit and 0 v could be a 0−bit. For most serial ports (used by external modems) +12 v is a
0−bit and −12 v is a 1−bit (some are + or − 5 v).

 Modem−HOWTO

 3.3 Digital Modems, RAS 18

To send data from your computer over the phone line, the modem takes the digital signal from your computer
and converts it to "analog". It does this by both creating an analog sine wave and then "MODulating" it. Since
the result still represents digital data, it could also be called a digital signal instead of analog. But it looks
something like an analog signal and almost everyone calls it analog. At the other end of the phone line another
modem "DEModulates" this signal and the pure digital signal is recovered. Put together the "mod" and "dem"
parts of the two words above and you get "modem" (if you drop one of the two d's). A "modem" is thus a
MODulator−DEModulator. Just what modulation is may be found in the section Modulation Details.

4.2 What is a Serial Port ?

Intro to Serial

The UART serial port (or just "serial port for short" is an I/O (Input/Output) device. Since modems have a
serial port between them and the computer, it's necessary to understand the serial port as well as the modem.

Most PC's have one or two serial ports. Each has a 9−pin connector (sometimes 25−pin) on the back of the
computer. Computer programs can send data (bytes) to the transmit pin (output) and receive bytes from the
receive pin (input). The other pins are for control purposes and ground.

The serial port is much more than just a connector. It converts the data from parallel to serial and changes the
electrical representation of the data. Inside the computer, data bits flow in parallel (using many wires at the
same time). Serial flow is a stream of bits over a single wire (such as on the transmit or receive pin of the
serial connector). For the serial port to create such a flow, it must convert data from parallel (inside the
computer) to serial on the transmit pin (and conversely).

Most of the electronics of the serial port is found in a computer chip (or a part of a chip) known as a UART.
For more details on UARTs see the section "What are UARTS" in the Serial−HOWTO.

But you may want to finish this section first so that you will hopefully understand how the UART fits into the
overall scheme of things.

Pins and Wires

Old PC's used 25 pin connectors but only about 9 pins were actually used so today most connectors are only
9−pin. Each of the 9 pins usually connects to a wire. Besides the two wires used for transmitting and receiving
data, another pin (wire) is signal ground. The voltage on any wire is measured with respect to this ground.
Thus the minimum number of wires to use for 2−way transmission of data is 3. Except that it has been known
to work with no signal ground wire but with degraded performance and sometimes with errors.

There are still more wires which are for control purposes (signalling) only and not for sending bytes. All of
these signals could have been shared on a single wire, but instead, there is a separate dedicated wire for every
type of signal. Some (or all) of these control wires are called "modem control lines". Modem control wires are
either in the asserted state (on) of +12 volts or in the negated state (off) of −12 volts. One of these wires is to
signal the computer to stop sending bytes out the serial port cable. Conversely, another wire signals the device
attached to the serial port to stop sending bytes to the computer. If the attached device is a modem, other wires
may tell the modem to hang up the telephone line or tell the computer that a connection has been made or that
the telephone line is ringing (someone is attempting to call in). See the Serial−HOWTO: Pinout and Signals
for more details.

 Modem−HOWTO

4.2 What is a Serial Port ? 19

Internal Modem Contains Serial Port

For an internal modem there is no 9−pin connector but the behavior is almost exactly as if the above
mentioned cable wires existed. Instead of a a 12 volt signal in a wire giving the state of a modem control line,
the internal modem may just use a status bit in its own memory (a register) to determine the state of this
non−existent "wire". The internal modem's serial port looks just like a real serial port to the computer. It even
includes the speed limits that one may set at ordinary serial ports such as 115200 bits/sec. Unfortunately for
Linux, many internal modems today don't work exactly this way but instead use software (running on the
CPU) to do much of the modem's work. Unfortunately, such software is often only available for the MS
Windows OS (it hasn't been ported to Linux). Thus you can't use most of these modems with Linux See
Software−based Modems (winmodems).

4.3 IO Address & IRQ

Since the computer needs to communicate with each serial port, the operating system must know that each
serial port exists and where it is (its I/O address). It also needs to know which wire (IRQ number) the serial
port must use to request service from the computer's CPU. It requests service by sending an interrupt on this
wire. Thus every serial port device must store in its non−volatile memory both its I/O address and its Interrupt
ReQuest number: IRQ. See Interrupts. For the PCI bus it doesn't work exactly this way since the PCI bus has
its own system of interrupts. But since the PCI−aware BIOS sets up chips to map these PCI interrupts to
IRQs, it seemingly behaves just as described above except that sharing of interrupts is allowed (2 or more
devices may use the same IRQ number).

I/O addresses are not the same as memory addresses. When an I/O addresses is put onto the computer's
address bus, another wire is energized. This both tells main memory to ignore the address and tells all devices
which have I/O addresses (such as the serial port) to listen to the address to see if it matches the device's. If
the address matches, then the I/O device reads the data on the data bus.

4.4 Names: ttyS0, ttyS1, etc.

The serial ports are named ttyS0, ttyS1, etc. (and usually correspond respectively to COM1, COM2, etc. in
DOS/Windows). The /dev directory has a special file for each port. Type "ls /dev/ttyS*" to see them. Just
because there may be (for example) a ttyS3 file, doesn't necessarily mean that there exists a physical serial
port there.

Which one of these names (ttyS0, ttyS1, etc.) refers to which physical serial port is determined as follows. The
serial driver (software) maintains a table showing which I/O address corresponds to which ttyS. This mapping
of names (such as ttyS1) to I/O addresses (and IRQ's) may be both set and viewed by the "setserial"
command. See What is Setserial. This does not set the I/O address and IRQ in the hardware itself (which is
set by jumpers or by plug−and−play software). Thus which physical port corresponds to say ttyS1 depends
both on what the serial driver thinks (per setserial) and what is set in the hardware. If a mistake has been
made, the physical port may not correspond to any name (such as ttyS2) and thus it can't be used. See Serial
Port Devices /dev/ttyS2, etc. for more details>

4.5 Interrupts

Bytes come in over the phone line to the modem, are converted from analog to digital by the modem and
passed along to the serial port on their way to their destination inside your computer. When the serial port
receives a number of bytes (may be set to 1, 4, 8, or 14) into its FIFO buffer, it signals the CPU to fetch them

 Modem−HOWTO

Internal Modem Contains Serial Port 20

by sending an electrical signal known as an interrupt on a certain wire normally used only by that port. Thus
the FIFO waits until it has received a number of bytes and then issues an interrupt.

However, this interrupt will also be sent if there is an unexpected delay while waiting for the next byte to
arrive (known as a timeout). Thus if the bytes are being received slowly (such as from someone typing on a
terminal keyboard) there may be an interrupt issued for every byte received. For some UART chips the rule is
like this: If 4 bytes in a row could have been received in an interval of time, but none of these 4 show up, then
the port gives up waiting for more bytes and issues an interrupt to fetch the bytes currently in the FIFO. Of
course, if the FIFO is empty, no interrupt will be issued.

Each interrupt conductor (inside the computer) has a number (IRQ) and the serial port must know which
conductor to use to signal on. For example, ttyS0 normally uses IRQ number 4 known as IRQ4 (or IRQ 4). A
list of them and more will be found in "man setserial" (search for "Configuring Serial Ports"). Interrupts are
issued whenever the serial port needs to get the CPU's attention. It's important to do this in a timely manner
since the buffer inside the serial port can hold only 16 incoming bytes. If the CPU fails to remove such
received bytes promptly, then there will not be any space left for any more incoming bytes and the small
buffer may overflow (overrun) resulting in a loss of data bytes.

For an external modem, there may be no way (such as flow control) to stop the flow rapidly enough to prevent
such an overrun. For an internal modem, the 16−byte FIFO buffer is on the same card and a good modem will
not write to it if it's full. Thus a good internal modem will not overrun the 16−byte buffers but it may need to
use Modem−to−Modem Flow Control to prevent the modem itself from being overrun. This is one advantage
of an internal modem over an external.

Interrupts are also issued when the serial port has just sent out all of its bytes from its small transmit FIFO
buffer out the external cable. It then has space for 16 more outgoing bytes. The interrupt is to notify the CPU
of that fact so that it may put more bytes in the small transmit buffer to be transmitted. Also, when a modem
control line changes state, an interrupt is issued.

The buffers mentioned above are all hardware buffers. The serial port also has large buffers in main memory.
This will be explained later

Interrupts convey a lot of information but only indirectly. The interrupt itself just tells a chip called the
interrupt controller that a certain serial port needs attention. The interrupt controller then signals the CPU. The
CPU then runs a special program to service the serial port. That program is called an interrupt service routine
(part of the serial driver software). It tries to find out what has happened at the serial port and then deals with
the problem such a transferring bytes from (or to) the serial port's hardware buffer. This program can easily
find out what has happened since the serial port has registers at IO addresses known to the the serial driver
software. These registers contain status information about the serial port. The software reads these registers
and by inspecting the contents, finds out what has happened and takes appropriate action.

4.6 Data Compression (by the Modem)

Before continuing with the basics of the serial port, one needs to understand about something done by the
modem: data compression. In some cases this task is actually done by software run on the computer's CPU but
unfortunately at present, such software only works for MS Windows. The discussion here will be for the case
where the modem itself does the compression since this is what must happen in order for the modem to work
under Linux.

 Modem−HOWTO

4.6 Data Compression (by the Modem) 21

In order to send data faster over the phone line, one may compress (encode it) using a custom encoding
scheme which itself depends on the data. The encoded data is smaller than the original (less bytes) and can be
sent over the Internet in less time. This process is called "data compression".

If you download files from the Internet, they are likely already compressed and it is not feasible for the
modem to try to compress them further. Your modem may sense that what is passing thru has already been
compressed and refrain from trying a compress it any more. If you are receiving data which has been
compressed by the other modem, your modem will decompress it and create many more bytes than were sent
over the phone line. Thus the flow of data from your modem into your computer will be higher than the flow
over the phone line to you. The ratio of this flow is called the compression ratio. Compression ratios as high
as 4 are possible, but not very likely.

4.7 Error Correction

Similar to data compression, modems may be set to do error correction. While there is some overhead cost
involved which slows down the byte/sec flow rate, the fact that error correction strips off start and stop bits
actually increases the data byte/sec flow rate.

For the serial port's interface with the external world, each 8−bit byte has 2 extra bits added to it: a start−bit
and a stop−bit. Without error correction, these extra start and stop bits usually go right thru the modem and
out over the phone lines. But when error correction is enabled, these extra bits are stripped off and the 8−bit
bytes are put into packets. This is more efficient and results in higher byte/sec flow in spite of the fact that
there are a few more bytes added for packet headers and error correction purposes.

4.8 Data Flow (Speeds)

Data (bytes representing letters, pictures, etc.) flows from your computer to your modem and then out on the
telephone line (and conversely). Flow rates (such as 56k (56000) bits/sec) are (incorrectly) called "speed". But
almost everyone says "speed" instead of "flow rate". If there were no data compression the flow rate from the
computer to the modem would be about the same as the flow rate over the telephone line.

Actually there are two different speeds to consider at your end of the phone line:

The speed on the phone line itself (DCE speed) modem−to−modem•
The speed from your computer's serial port to your modem (DTE speed)•

When you dial out and connect to another modem on the other end of the phone line, your modem often sends
you a message like "CONNECT 28800" or "CONNECT 115200". What do these mean? Well, its either the
DCE speed or the DTE speed. If it's higher than the advertised modem speed it must be the DTE
modem−to−computer speed. This is the case for the 115200 speed shown above. The 28800 must be a DCE
(modem−to−modem) speed since the serial port has no such speed. One may configure the modem to report
either speed. Some modems report both speeds and report the modem−to−modem speed as (for example):
CARRIER 28800.

If you have an internal modem you would not expect that there would be any speed limit on the DTE speed
from your modem to your computer since you modem is inside your computer and is almost part of your
computer. But there usually is since the modem contains a dedicated serial port within it. On some software
modems there is no such speed limit.

 Modem−HOWTO

4.7 Error Correction 22

It's important to understand that the average speed is often less than the specified speed, especially on the
short DTE computer−to−modem line. Waits (or idle time) result in a lower average speed. These waits may
include long waits of perhaps a second due to Flow Control. At the other extreme there may be very short
waits (idle time) of several micro−seconds separating the end of one byte and the start of the next byte. In
addition, modems will fallback to lower speeds if the telephone line conditions are less than pristine.

For a discussion of what DTE speed is best to use see section What Speed Should I Use.

4.9 Flow Control

Flow control means the ability to slow down the flow of bytes in a wire. For serial ports this means the ability
to stop and then restart the flow without any loss of bytes. Flow control is needed for modems and other
hardware to allow a jump in instantaneous flow rates.

Example of Flow Control

For example, consider the case where you connect a 33.6k external modem via a short cable to your serial
port. The modem sends and receives bytes over the phone line at 33.6k bits per second (bps). Assume it's not
doing any data compression or error correction. You have set the serial port speed to 115,200 bits/sec (bps),
and you are sending data from your computer to the phone line. Then the flow from the your computer to your
modem over the short cable is at 115.2k bps. However the flow from your modem out the phone line is only
33.6k bps. Since a faster flow (115.2k) is going into your modem than is coming out of it, the modem is
storing the excess flow (115.2k −33.6k = 81.6k bps) in one of its buffers. This buffer would soon overrun (run
out of free storage space) unless the high 115.2k flow is stopped.

But now flow control comes to the rescue. When the modem's buffer is almost full, the modem sends a stop
signal to the serial port. The serial port passes on the stop signal on to the device driver and the 115.2k bps
flow is halted. Then the modem continues to send out data at 33.6k bps drawing on the data it previous
accumulated in its buffer. Since nothing is coming into this buffer, the number of bytes in it starts to drop.
When almost no bytes are left in the buffer, the modem sends a start signal to the serial port and the 115.2k
flow from the computer to the modem resumes. In effect, flow control creates an average flow rate in the short
cable (in this case 33.6k) which is significantly less than the "on" flow rate of 115.2k bps. This is "start−stop"
flow control.

In the above simple example it was assumed that the modem did no data compression. This could happen
when the modem is sending a file which is already compressed and can't be compressed further. Now let's
consider the opposite extreme where the modem is compressing the data with a high compression ratio. In
such a case the modem might need an input flow rate of say 115.2k bps to provide an output (to the phone
line) of 33.6k bps (compressed data). This compression ratio is 3.43 (115.2/33.6). In this case the modem is
able to compress the 115.2 bps PC−to−modem flow and send the same data (in compressed form) out the
phone line at 33.6bps. There's no need for flow control here so long as the compression ratio remains higher
that 3.43. But the compression ratio varies from second to second and if it should drop below 3.43, flow
control will be needed

In the above example, the modem was an external modem. But the same situation exists (as of early 2003) for
most internal modems. There is still a speed limit on the PC−to−modem speed even though this flow doesn't
take place over an external cable. This makes the internal modems compatible with the external modems.

In the above example of flow control, the flow was from the computer to a modem. But there is also flow
control which is used for the opposite direction of flow: from a modem (or other device) to a computer. Each

 Modem−HOWTO

 4.9 Flow Control 23

direction of flow involves 3 buffers: 1. in the modem 2. in the UART chip (called FIFOs) and 3. in main
memory managed by the serial driver. Flow control protects all buffers (except the FIFOs) from overflowing.

Under Linux, the small UART FIFO buffers are not protected by flow control but instead rely on a fast
response to the interrupts they issue. Some UART chips can be set to do hardware flow control to protect their
FIFOs but Linux (as of early 2003) doesn't seem to support it. FIFO stand for "First In, First Out" which is the
way it handles bytes in a queue. All the 3 buffers use the FIFO rule but only the one in the UART is named
"FIFO". This is the essence of flow control but there are still some more details.

If you have set the highest PC−to−modem speed, you may not need flow control in the direction from the
modem to a PC. For a complex example of a case where it's needed see "Complex Flow Control Example" in
the Serial−HOWTO. To slow down this incoming flow, your modem must tell the other modem to stop
sending. See Modem−to−Modem Flow Control.

Hardware vs. Software Flow Control

If feasible, it's best to use "hardware" flow control that uses two dedicated "modem control" wires to send the
"stop" and "start" signals. Hardware flow control at the serial port works like this: The two pins, RTS
(Request to send) and CTS (Clear to send) are used. When the computer is ready to receive date it asserts RTS
by putting a positive voltage on the RTS pin (meaning "Request To Send to me"). When the computer is not
able to receive any more bytes, it negates RTS by putting a negative voltage on the pin saying: "stop sending
to me". The RTS pin is connected by the serial cable to another pin on the modem, printer, terminal, etc. This
other pin's only function is to receive the signal.

For the case of a modem this "other" pin will be the modem's RTS pin. But for a printer, another PC, or a
non−modem device, it's usually a CTS pin so a "crossover" or "null modem" cable is required. This cable
connects the CTS pin at one end with the RTS pin at the other end (two wires since each end of the cable has a
CTS pin). For a modem, a straight−thru cable is used.

For the opposite direction of flow a similar scheme is used. For a modem, the CTS pin is used to send the
flow control signal to the CTS pin on the PC. For a non−modem, the RTS pin sends the signal. Thus modems
and non−modems have the roles of their RTS and CTS pins interchanged. Some non−modems such as dumb
terminals may use other pins for flow control such as the DTR pin instead of RTS.

Software flow control uses the main receive and transmit wires to send the start and stop signals. It uses the
ASCII control characters DC1 (start) and DC3 (stop) for this purpose. They are just inserted into the regular
stream of data. Software flow control is not only slower in reacting but also does not allow the sending of
binary data unless special precautions are taken. Since binary data will likely contain DC1 and DC3, special
means must be taken to distinguish between a DC3 that means a flow control stop and a DC3 that is part of
the binary code. Likewise for DC1. To get software flow control to work for binary data requires both modem
(hardware) and software support

Symptoms of No Flow Control

Understanding flow−control theory can be of practical use. For example I used my modem to access the
Internet and it seemed to work fine. But after a few months, I tried to send out long files from my PC and a
huge amount of retries and errors resulted but it finally succeeded. Receiving in the other direction (from my
ISP to me) worked fine. The problem turned out to be a modem with flow control disabled. My modem's
buffer was overflowing (overrunning) on long outgoing files since no "stop" signal was ever sent to my
computer to halt sending to the modem. There was no problem in the direction from the modem to my

 Modem−HOWTO

Hardware vs. Software Flow Control 24

computer since the capacity (say 115.2 kbps) was always higher than the flow from the telephone line. But it
was a problem in the other direction where the PC would send at 115.2 kbps and the modem couldn't handle
this high flow resulting in overruns of the modem's buffer. The fix was to enable flow control by putting into
the modem's init string an enable−flow−control command.

Modem−to−Modem Flow Control

This is the flow control of the data sent over the telephone lines between two modems. It works as long as
error correction is enabled. Actually, even without error correction it's possible to enable software flow
control between modems but it may interfere with sending binary data so it's not often used.

4.10 Data Flow Path; Buffers

It's been mention that there are 3 buffers for each direction of flow (3 pairs altogether): 16−byte FIFO buffers
(in the UART), a pair of larger buffers inside a device connected to the serial port (such as a modem), and a
pair of buffers (say 8k) in main memory. When an application program sends bytes to the serial port they first
get stashed in the transmit serial port buffer in main memory. The other member of the pair consists of a
receive buffer for the opposite direction of byte−flow. Here's an example diagram for the case of browsing the
Internet with a browser. Transmit data flow is left to right while receive flow is right to left. There is a
separate buffer for each direction of flow.

application 8k−byte 16−byte 1k−byte tele−
BROWSER −−−−−−− MEMORY −−−−−−−− FIFO −−−−−−−−− MODEM −−−−−−−− phone
program buffer buffer buffer line

For the transmit case, the serial device driver takes out say 16 bytes from this transmit buffer (in main
memory), one byte at a time and puts them into the 16−byte transmit buffer in the serial UART for
transmission. Once in that transmit buffer, there is no way to stop them from being transmitted. They are then
transmitted to the modem or (other device connected to the serial port) which also has a fair sized (say 1k)
buffer. When the device driver (on orders from flow control) stops the flow of outgoing bytes from the
computer, what it actually stops is the flow of outgoing bytes from the large transmit buffer in main memory.
Even after this has happened and the flow to the modem has stopped, an application program may keep
sending bytes to the 8k transmit buffer until it becomes fill. At the same time, the bytes stored in the FIFO and
MODEM continue to be sent out until these buffers empty.

When the memory buffer gets fill, the application program can't send any more bytes to it (a "write" statement
in a C_program blocks) and the application program temporarily stops running and waits until some buffer
space becomes available. Thus a flow control "stop" is ultimately able to stop the program that is sending the
bytes. Even though this program stops, the computer does not necessarily stop computing since it may switch
to running other processes while it's waiting at a flow control stop.

The above was a little oversimplified in three ways. First, some UARTs can do automatic hardware flow
control which can stop the transmission out of the FIFO buffers if needed (not yet supported by Linux).
Second, while an application process is waiting to write to the transmit buffer, it could possibly perform other
tasks. Third, the serial driver (located between the memory buffer and the FIFO) has it's own buffer (in main
memory) used to process characters.

 Modem−HOWTO

 Modem−to−Modem Flow Control 25

4.11 Modem Commands

Commands to the modem are sent to it from the communication software over the same conductor as used to
send data. The commands are short ASCII strings. Examples are "AT&K3" for enabling hardware flow
control (RTS/CTS) between your computer and modem; and "ATDT5393401 for Dialing the number
5393401. Note all commands are prefaced by "AT". Some commands such as enabling flow control help
configure the modem. Other commands such as dialing a number actually do something. There are about a
hundred or so different possible commands. When your communication software starts running, it first sends
an "init" string of commands to the modem to configure it. All commands are sent on the ordinary data line
before the modem dials (or receives a call).

Once the modem is connected to another modem (on−line mode), everything that is sent from your computer
to your modem goes directly to the other modem and is not interpreted by the modem as a command. There is
a way to "escape" from this mode of operation and go back to command mode where everything sent to the
modem will be interpreted as a command. The computer just sends "+++" with a specified time spacing
before and after it. If this time spacing is correct, the modem reverts to command mode. Another way to do
this is by a signal on a certain modem control line.

There are a number of lists of modem commands on the Internet. The section Web Sites has links to a couple
of such web−sites. Different models and brands of modems do not use exactly the same set of such
commands. So what works for one modem might not work for another. Some common commands (not
guaranteed to work on all modems) are listed in this HOWTO in the section Modem Configuration

4.12 Serial Driver Module

The device driver for the serial port is the software that operates the serial port. It is now provided as a serial
module. From kernel 2.2 on, this module will normally get loaded automatically if it's needed. In earlier
kernels, you had to have kerneld running in order to do auto−load modules on demand. Otherwise the
serial module needed to be explicitly listed in /etc/modules. Before modules became popular with Linux, the
serial driver was usually built into the kernel (and sometimes still is). If it's built−in don't let the serial module
load or else you will have two serial drivers running at the same time. With 2 drivers there are all sorts of
errors including a possible "I/O error" when attempting to open a serial port. Use "lsmod" to see if the module
is loaded.

When the serial module is loaded it displays a message on the screen about the existing serial ports (often
showing a wrong IRQ). But once the module is used by setserial to tell the device driver the (hopefully)
correct IRQ then you should see a second display similar to the first but with the correct IRQ, etc. See "Serial
Module" in the Serial−HOWTO. See What is Setserial for more info on setserial.

5. Configuring Overview

Since each modem has an associated serial port and the port has both hardware and software, there are three
parts to configuring a modem:

Locate the serial port hardware: IO address, IRQ; Done by PnP methods or jumpers, setserial. See
Locating the Serial Port: IO address IRQs What is Setserial

•

Configure the serial port driver (high−level): Done by the communication program (stty−like). Sets
speed, flow control, etc. See Configuring the Serial Driver (high−level) See What is stty ?

•

Configure the modem itself: Done by the communication program See Modem Configuration•

 Modem−HOWTO

4.11 Modem Commands 26

The above omits a few other things that "setserial" can do besides locating the serial ports. But normally you
don't need to use them. Setserial may be used in the future to enable super−high speed.

Communication programs include minicom, seyon, or wvdial (for PPP) and mgetty for dial−in. Such
communication programs require that you configure them although the default configuration they come with
may only need a little tweaking.

Unfortunately the communication program doesn't locate the serial port. This "locating" is the low−level PnP
configuring of the serial port: setting its IO address and IRQ in both the hardware and the driver. If you are
lucky, this will happen automatically when you boot Linux. Setting these in the hardware was formerly done
by jumpers and then running "setserial" but today it's done by "Plug−and−Play" software. You may still need
"setserial". So if the serial driver can't find the serial port your modem is on, then you can try to find it
yourself per the next section but it may not be easy.

6. Locating the Serial Port: IO address, IRQs

6.1 IO & IRQ Overview

For a serial port to work properly, it must have both an IRQ and an IO address. Without an IO address, it can't
be located and will not work at all. Without an IRQ it will need to use inefficient polling methods for which
one must set the IRQ to 0. So every serial port needs an IO address and IRQ. In olden days this was set by
jumpers on a serial port card. Today it's set by digital signals sent to the hardware and this is part of
"Plug−and−Play (PnP).

The driver must also know both the IO address and IRQ so that it can locate the port chip. Modern serial port
drivers (kernel 2.4) try to determine this by PnP methods so one doesn't need to tell them (by using
"setserial"). Such a driver might also set an IO address or enable the hardware. But unfortunately, there is
some PCI serial port hardware that the driver doesn't recognize so you may need to enable the port yourself.
See PCI: Enabling a disabled port

The driver also probes possible ISA serial port addresses to see if there are any serial ports there. This works
for the case of jumpers and sometimes works for a PnP port when the driver doesn't do PnP (prior to kernel
2.4).

Locating the serial port by giving it an IRQ and IO address is low−level configuring. It's often automatically
done by the serial driver but sometimes you have to do it yourself. What follows repeats what was said above
but in more detail.

The low−level configuring consists of assigning an IO address, IRQ, and name (such as ttyS2). This IO−IRQ
pair must be set in both the hardware and told to the serial driver. Only the driver needs to know the name.We
could call this "io−irq" configuring for short. The "setserial" program is one way to tell the driver. The other
way is for the driver to use PnP methods to determine/set the IO/IRQ and then remember what it did. For
jumpers you must always use "setserial". If you need to configure but don't understand certain details it's easy
to get into trouble.

When Linux starts, some effort is made to detect and configure (low−level) a few serial ports. Exactly what
happens depends on your BIOS, hardware, Linux distribution, etc. If the serial ports work OK, there may be
no need for you to do any more low−level configuring.

 Modem−HOWTO

 6. Locating the Serial Port: IO address, IRQs 27

If you're having problems with the serial ports, then you may need to do low−level configuring. If you have
kernel 2.2 or lower, then you need to do it if you:

Plan to use more than 2 ISA serial ports•
Are installing a new serial port (such as an internal modem)•

For kernel 2.2+ you may be able to use more that 2 serial ports without doing any low−level configuring by
sharing interrupts. All PCI ports should support this but for ISA it only works for some hardware. It may be
just as easy to give each port a unique interrupt if they is available. See Interrupt sharing and Kernels 2.2+

The low−level configuring (setting the IRQ and IO address) seems to cause people more trouble than the
high−level stuff, although for many it's fully automatic and there is no configuring to be done. Until the serial
driver knows the correct IRQ and IO address, the port will not usually not work at all. Also, PnP ports can be
disabled so that they can't be found (except with PnP tools such as lspci). Applications, and utilities such as
"setserial" and "scanport" (Debian only ??) don't use PnP tools and thus can't detect disabled ports.

Even if an ISA port can be found by the probing of the serial driver it may work extremely slow if the IRQ is
wrong. See Extremely Slow: Text appears on the screen slowly after long delays. PCI ports are less likely to
get the IRQ wrong.

In the Wintel world, the IO address and IRQ are called "resources" and we are thus configuring certain
resources. But there are many other types of "resources" so the term has many other meanings. In summary,
the low−level configuring consists of enabling the device, giving it a name (ttyS2 for example) and putting
two values (an IRQ number and IO address) into two places:

the device driver (often by running "setserial" at boot−time)1.
configuration registers of the serial port hardware itself2.

You may watch the start−up (= boot−time) messages. They are usually correct. But if you're having problems,
your serial port may not show up at all or if you do see a message from "setserial" it may not show the true
configuration of the hardware (and it is not necessarily supposed to). See I/O Address & IRQ: Boot−time
messages.

6.2 PCI Bus Support

Introduction

Although some PCI modems are "winmodems" without a Linux driver (and will not work under Linux), other
PCI modems will often work OK under Linux. If it's a software modem, then you need to find a driver for it.
See Linmodem−HOWTO.

If you have kernel 2.4, then there should be support for PnP (either built−in or by modules). Some PCI serial
ports can be automatically detected and low−level configured by the serial driver. Others may not be. No
support exists in the serial driver for software modems. But separate drivers exist for many of them.Kernel 2.2
had no support for PCI serial ports (although some people got them working anyway). The 2.4 serial driver
will read the id number digitally stored in the serial hardware to determine how to support it (if it knows how).
It should assign an I/O address to it, determine it's IRQ, etc. So you don't need to use "setserial" for it.

 Modem−HOWTO

 6.2 PCI Bus Support 28

More info on PCI

PCI ports are not well standardized. Some use main memory for communication with the PC. Some require
special enabling of the IRQ. The output of "lspci −vv" can help determine if one can be supported. If you see
a 4−digit IO port, the port might work by just telling "setserial" the IO port and the IRQ. Some people have
gotten a 3COM 3CP5610 PCI Modem to work that way.For example, if lspci shows IRQ 10, I/O at 0xecb8
and you decide to name it ttyS2 then the command is:

setserial /dev/ttyS2 irq 10 port 0xecb8 autoconfig

Note that the boot−time message "Probing PCI hardware" means reading the PnP configuration registers in
the PCI cards which reveals the IO addresses and IRQs. This is different that the probing of IO addresses by
the serial driver which means reading certain IO addresses to see if what's read looks like there's a serial port
at that address.

6.3 Common mistakes made re low−level configuring

Here are some common mistakes people make:

setserial command: They run it (without the "autoconfig" and auto_irq options) and think it has
checked the hardware to see if what it shows is correct (it hasn't).

•

setserial messages: They see them displayed on the screen at boot−time (or by giving the setserial
command) and erroneously think that the result always shows how their hardware is actually
configured.

•

/proc/interrupts: When their serial device isn't in use they don't see its interrupt there, and erroneously
conclude that their serial port can't be found (or doesn't have an interrupt set).

•

/proc/ioports and /proc/tty/driver/serial: People think this shows the actual hardware configuration
when it only shows about the same info (possibly erroneous) as setserial.

•

6.4 IRQ & IO Address Must be Correct

There are really two answers to the question "What is my IO and IRQ?" 1. What the device driver thinks has
been set (This is what setserial usually sets and shows.). 2. What is actually set in the hardware. Both 1. and 2.
above should be the same. If they're not it spells trouble since the driver has incorrect info on the physical
serial port. In some cases the hardware is disabled so it has no IO address or IRQ.

If the driver has the wrong IO address it will try to send data to a non−existing serial port −−or even worse, to
some other device. If it has the wrong IRQ the driver will not get interrupt service requests from the serial
port, resulting in a very slow or no response. See Extremely Slow: Text appears on the screen slowly after
long delays. If it has the wrong model of UART there is also apt to be trouble. To determine if both I0−IRQ
pairs are identical you must find out how they are set in both the driver and the hardware.

6.5 What is the IO Address and IRQ per the driver ?

Introduction

What the driver thinks is not necessarily how the hardware is actually set. If everything works OK then what
the driver thinks is likely correct (set in the hardware) and you don't need to investigate (unless you're curious
or want to become a guru). Ways to determine what the driver thinks include: boot−time messages I/O

 Modem−HOWTO

More info on PCI 29

Address & IRQ: Boot−time messages, the /proc directory "files" The /proc directory and setserial, and the
"setserial" command.

I/O Address & IRQ: Boot−time messages

In many cases your ports will automatically get low−level configured at boot−time (but not always correctly).
To see what is happening, look at the start−up messages on the screen. Don't neglect to check the messages
from the BIOS before Linux is loaded (no examples shown here). These BIOS messages may be frozen by
pressing the Pause key. Use Shift−PageUp to scroll back to the messages after they have flashed by.
Shift−PageDown will scroll in the opposite direction. The dmesg command (or looking at logs in /var/log)
will show some of the messages but they seem to miss important ones from setserial. Here's an example of the
start−up messages (as of mid 1999). Note that ttyS00 is the same as /dev/ttyS0.

At first you see what was detected (but the irq is only a wild guess):

Serial driver version 4.27 with no serial options enabled
ttyS00 at 0x03f8 (irq = 4) is a 16550A
ttyS01 at 0x02f8 (irq = 3) is a 16550A
ttyS02 at 0x03e8 (irq = 4) is a 16550A

Later setserial shows you what was saved, but it's not necessarily
correct either:

Loading the saved−state of the serial devices...
/dev/ttyS0 at 0x03f8 (irq = 4) is a 16550A
/dev/ttyS1 at 0x02f8 (irq = 3) is a 16550A
/dev/ttyS2 at 0x03e8 (irq = 5) is a 16550A

Note that there is a slight disagreement: The first message shows ttyS2 at irq=4 while the second shows it at
irq=5. dmesg may not display the second message. In most cases the second message is the correct one. But if
your having trouble it may be misleading. Before reading the explanation of all of this complexity in the rest
of this section, you might just try using your serial port and see if it works OK. If so it may not be essential to
read further.

The second message is from the setserial program being run at boot−time. It shows what the device
driver thinks is the correct configuration. But this too could be wrong. For example, the irq could actually be
set to irq=8 in the hardware (both messages wrong). The irq=5 could be there because someone incorrectly
put this into a configuration file (or the like). The fact that Linux sometimes gets IRQs wrong is because it
doesn't by default probe for IRQs. It just assumes the "standard" ones (first message) or accepts what you told
it when you configured it (second message). Neither of these is necessarily correct. If the serial driver has the
wrong IRQ, the serial port is very slow or doesn't seem to work at all.

The first message is a result of Linux probing the serial port addresses but it doesn't probe for IRQs. If a port
shows up here it exists but the IRQ may be wrong. Linux doesn't check IRQs because doing so is not
foolproof. It just assumes the IRQs are as shown because they are the "standard" values. Your may check
them manually with setserial using the autoconfig and auto_irq options but this isn't guaranteed
to be correct either.

The data shown by the BIOS messages (which you see at first before Linux is booted) is what is initially set in
the hardware. If your serial port is Plug−and−Play (PnP) then it's possible that "isapnp" or "setpci" will run
and change these settings. Look for messages about this after Linux starts. The last serial port message shown
in the example above should agree with the BIOS messages (as possibly modified by isapnp or setpci). If they
don't agree then you either need to change the setting in the port hardware or use setserial to tell the driver

 Modem−HOWTO

 I/O Address & IRQ: Boot−time messages 30

what is actually set in the hardware.

Also, if you have Plug−and−Play (PnP) serial ports, they can only be found by PnP software unless the IRQ
and IO has been set inside the hardware by Plug−and−Play software. Prior to kernel 2.4 this was a common
reason why the start−up messages did not show a serial port that physically exists. A PnP BIOS may
automatically low−level configure them. PnP configuring will be explained later.

The /proc directory and setserial

Type "setserial −g /dev/ttyS*". There are some other ways to find this info by looking at "files" in the /proc
directory. Be warned that there is no guarantee that the same is set in the hardware.

/proc/ioports will show the IO addresses that the drivers are using. /proc/interrupts shows the
IRQs that are used by drivers of currently running processes (that have devices open). It shows how many
interrupts have actually be issued. /proc/tty/driver/serial shows much of the above, plus the
number of bytes that have been received and sent (even if the device is not now open).

Note that for the IO addresses and IRQ assignments, you are only seeing what the driver thinks and not
necessarily what is actually set in the hardware. The data on the actual number of interrupts issued and bytes
processed is real however. If you see a large number of interrupts and/or bytes then it probably means that the
device is (or was) working. But the interrupts might be from another device. If there are no bytes received
(rx:0) but bytes were transmitted (tx:3749 for example), then only one direction of flow is working (or being
utilized).

Sometimes a showing of just a few interrupts doesn't mean that the interrupt is actually being physically
generated by any serial port. Thus if you see almost no interrupts for a port that you're trying to use, that
interrupt might not be set in the hardware. To view /proc/interrupts to check on a program that you're
currently running (such as "minicom") you need to keep the program running while you view it.

6.6 What is the IO Address & IRQ of my Serial Port
Hardware?

Introduction

If it's PCI or ISA PnP then what's set in the hardware has been done by PnP methods. Even if nothing has
been set or the port disabled, PnP ports may still be found by using "lspci −v" or "isapnp −−dumpregs". Ports
disabled by jumpers (or hardware failures) are completely lost. See ISA PnP ports, PCI: What IOs and IRQs
have been set?, PCI: Enabling a disabled port

PnP ports don't store their configuration in the hardware when the power is turned off. This is in contrast to
Jumpers (non−PnP) which remain the same with the power off. That's why a PnP port is more likely to be
found in a disabled state than an old non−PnP one.

PCI: What IOs and IRQs have been set?

For PCI, the BIOS almost always sets the IRQ and may set the IO address as well. To see how it's set use
"lspci −vv" (best) or look in /proc/bus/pci (or for kernels <2.2 /proc/pci). The modem's serial port is often
called a "Communication controller". Look for this. If lspci shows "I/O ports at ... [disabled]" then the serial
port is disabled and the hardware has no IO address so it's lost and can't be used. See PCI: Enabling a disabled

 Modem−HOWTO

 The /proc directory and setserial 31

port for how to enable it.

If more than one IO address is shown, the first one is more likely to be it. You can't change the IRQ (at least
not with "setpci") This is because if one writes an IRQ it it's hardware register no action is taken on it. It's the
BIOS that should actually set up the IRQs and then write the correct value to this register for lspci to view. If
you must, change the IO address with "setpci" by changing the BASE_ADDRESS_0 or the like.

PCI: Enabling a disabled port

If the port communicates via an IO address then "lspci −vv" should show "Control: I/O+ ..." with + meaning
that the IO address is enabled. If it shows "I/O−" (and "I/O ports at ... [disabled]") then you may need to use
the setpci command to enable it. For example "setpci −d 151f:000 command=101". 151f is the vendor id, and
000 is the device id both obtained from "lspci −n −v" or from /proc/bus/pci or from "scanpci −v". The
"command=101" means that 101 is put into the command register which is the same as the "Control" register
displayed by "lspci". The 101h sets two bits: the 1 sets I/O to + and the 100 part keeps SERR# set to +. In this
case only the SERR# bit of the Control register was initially observed to be + when the lspci command was
run. So we kept it enabled to + by setting bit 8 (where bit 0 is I/O) to 1 by the first 1 in 101. Some serial cards
don't use SERR# so if you see SERR#− then there's no need to enable it so then use: command=1. Then you'll
need to set up "setserial" to tell the driver the IO and IRQ.

Bit 8 is actually the 9th bit since we started counting bits from 0. Don't be alarmed that lspci shows a lot of −
signs showing that the card doesn't have many features available (or enabled). Serial ports are relatively slow
and don't need these features.

Another way to enable it is to let the BIOS do it by telling the BIOS that you don't have a plug−and−play
operating system. Then the BIOS should enable it when you start your PC. If you have MS Windows9x on the
same PC then doing this might cause problems with Windows (see Plug−and−Play−HOWTO).

ISA PnP ports

For an ISA Plug−and−Play (PnP) port one may try the pnpdump program (part of isapnptools). If you
use the −−dumpregs option then it should tell you the actual IO address and IRQ set in the port. It should also
find an ISA PnP port that is disabled. The address it "trys" is not the device's IO address, but a special address
used for communicating with PnP cards.

Finding a port that is not disabled (ISA, PCI, PnP, non−PnP)

Perhaps the BIOS messages will tell you some info before Linux starts booting. Use the shift−PageUp key to
step back thru the boot−time messages and look at the very first ones which are from the BIOS. This is how it
was before Linux started. Setserial can't change it but isapnp or setpci can. Starting with kernel 2.4, the serial
driver can make such changes for many (but not all) serial ports.

Using "scanport" (Debian only ??) will probe all I/O ports and will indicate what it thinks may be serial port.
After this you could try probing with setserial using the "autoconfig" option. You'll need to guess the
addresses to probe at (using clues from "scanport"). See What is Setserial.

For a port set with jumpers, the IO ports and IRQs are set per the jumpers. If the port is not Plug−and−Play
(PnP) but has been setup by using a DOS program, then it's set at whatever the person who ran that program
set it to.

 Modem−HOWTO

 PCI: Enabling a disabled port 32

Exploring via MS Windows (a last resort)

For PnP ports, checking on how it's configured under DOS/Windows may (or may not) imply how it's under
Linux. MS Windows stores its configuration info in its Registry which is not used by Linux so they are not
necessarily configured the same. If you let a PnP BIOS automatically do the configuring when you start Linux
(and have told the BIOS that you don't have a PnP operating system when starting Linux) then Linux should
use whatever configuration is in the BIOS's non−volatile memory. Windows also makes use of the same
non−volatile memory but doesn't necessarily configure it that way.

6.7 Choosing Serial IRQs

If you have Plug−and−Play ports then either a PnP BIOS or a serial driver may configure all your devices for
you so then you may not need to choose any IRQs. PnP software determines what it thinks is best and assigns
them (but it's not always best). But if you directly use isapnp (ISA bus) or jumpers then you have to choose. If
you already know what IRQ you want to use you could skip this section except that you may want to know
that IRQ 0 has a special use (see the following paragraph).

IRQ 0 is not an IRQ

While IRQ 0 is actually the timer (in hardware) it has a special meaning for setting a serial port with setserial.
It tells the driver that there is no interrupt for the port and the driver then will use polling methods. Such
polling puts more load on the CPU but can be tried if there is an interrupt conflict or mis−set interrupt. The
advantage of assigning IRQ 0 is that you don't need to know what interrupt is set in the hardware. It should be
used only as a temporary expedient until you are able to find a real interrupt to use.

Interrupt sharing, Kernels 2.2+

Sharing of IRQs is where two devices use the same IRQ. As a general rule, this wasn't allowed for the ISA
bus. The PCI bus may share IRQs but one can't share the same IRQ between the ISA and the PCI bus. Most
multi−port boards may share IRQs. Sharing is not as efficient since every time a shared interrupt is given a
check must be made to determine where it came from. Thus if it's feasible, it's nicer to allocate every device
its own interrupt.

Prior to kernel 2.2, serial IRQs could not be shared with each other except for most multiport boards. Starting
with kernel 2.2 serial IRQs may be sometimes shared between serial ports. In order for sharing to work in 2.2
the kernel must have been compiled with CONFIG_SERIAL_SHARE_IRQ, and the serial port hardware must
support sharing (so that if two serial cards put different voltages on the same interrupt wire, only the voltage
that means "this is an interrupt" will prevail). Since the PCI bus specs permit sharing, any PCI card should
allow sharing.

What IRQs to choose?

The serial hardware often has only a limited number of IRQs. Also you don't want IRQ conflicts. So there
may not be much of a choice. Your PC may normally come with ttyS0 and ttyS2 at IRQ 4, and ttyS1
and ttyS3 at IRQ 3. Looking at /proc/interrupts will show which IRQs are being used by programs
currently running. You likely don't want to use one of these. Before IRQ 5 was used for sound cards, it was
often used for a serial port.

 Modem−HOWTO

Exploring via MS Windows (a last resort) 33

Here is how Greg (original author of Serial−HOWTO) set his up in /etc/rc.d/rc.serial. rc.serial is a file (shell
script) which runs at start−up (it may have a different name or location). For versions of "setserial" after 2.15
it's not always done this way anymore but this example does show the choice of IRQs.

/sbin/setserial /dev/ttyS0 irq 3 # my serial mouse
/sbin/setserial /dev/ttyS1 irq 4 # my Wyse dumb terminal
/sbin/setserial /dev/ttyS2 irq 5 # my Zoom modem
/sbin/setserial /dev/ttyS3 irq 9 # my USR modem

Standard IRQ assignments:

 IRQ 0 Timer channel 0 (May mean "no interrupt". See below.)
 IRQ 1 Keyboard
 IRQ 2 Cascade for controller 2
 IRQ 3 Serial port 2
 IRQ 4 Serial port 1
 IRQ 5 Parallel port 2, Sound card
 IRQ 6 Floppy diskette
 IRQ 7 Parallel port 1
 IRQ 8 Real−time clock
 IRQ 9 Redirected to IRQ2
 IRQ 10 not assigned
 IRQ 11 not assigned
 IRQ 12 not assigned
 IRQ 13 Math coprocessor
 IRQ 14 Hard disk controller 1
 IRQ 15 Hard disk controller 2

There is really no Right Thing to do when choosing interrupts. Try to find one that isn't being used by the
motherboard, or any other boards. 2, 3, 4, 5, 7, 10, 11, 12 or 15 are possible choices. Note that IRQ 2 is the
same as IRQ 9. You can call it either 2 or 9, the serial driver is very understanding. If you have a very old
serial board it may not be able to use IRQs 8 and above.

Make sure you don't use IRQs 1, 6, 8, 13 or 14! These are used by your motherboard. You will make her very
unhappy by taking her IRQs. When you are done you might want to double−check /proc/interrupts
when programs that use interrupts are being run and make sure there are no conflicts.

6.8 Choosing Addresses −−Video card conflict with ttyS3

Here's a problem with some old serial cards. The IO address of the IBM 8514 video board (and others like it)
is allegedly 0x?2e8 where ? is 2, 4, 8, or 9. This may conflict with the IO address of ttyS3 at 0x02e8. Your
may think that this shouldn't happen since the addresses are different in the high order digit (the leading 0 in
02e8). You're right, but a poorly designed serial port may ignore the high order digit and respond to any
address that ends in 2e8. That is bad news if you try to use ttyS3 (ISA bus) at this IO address.

For the ISA bus you should try to use the default addresses shown below. PCI cards use different addresses so
as not to conflict with ISA addresses. The addresses shown below represent the first address of an 8−byte
range. For example 3f8 is really the range 3f8−3ff. Each serial device (as well as other types of devices that
use IO addresses) needs its own unique address range. There should be no overlaps (conflicts). Here are the
default addresses for commonly used serial ports on the ISA bus:

ttyS0 address 0x3f8
ttyS1 address 0x2f8
ttyS2 address 0x3e8
ttyS3 address 0x2e8

 Modem−HOWTO

 6.8 Choosing Addresses −−Video card conflict with ttyS3 34

Suppose there is an address conflict (as reported by setserial −g /dev/ttyS*) between a real serial
port and another port which does not physically exist (and shows UART: unknown). Such a conflict shouldn't
cause problems but it sometimes does in older kernels. To avoid this problem don't permit such address
conflicts or delete /dev/ttySx if it doesn't physically exist.

6.9 Set IO Address & IRQ in the hardware (mostly for PnP)

After it's set in the hardware don't forget to insure that it also gets set in the driver by using setserial. For
non−PnP serial ports they are either set in hardware by jumpers or by running a DOS program ("jumperless")
to set them (it may disable PnP). The rest of this subsection is only for PnP serial ports. Here's a list of the
possible methods of configuring PnP serial ports:

Using a PnP BIOS CMOS setup menu (usually only for external modems on ttyS0 (Com1) and ttyS1
(Com2))

•

Letting a PnP BIOS automatically configure a PnP serial port See Using a PnP BIOS to I0−IRQ
Configure

•

Doing nothing if the serial driver recognized your card OK•
Using isapnp for a PnP serial port non−PCI)•
Using setpci (pciutils or pcitools) for the PCI bus•

The IO address and IRQ must be set (by PnP) in their registers each time the system is powered on since PnP
hardware doesn't remember how it was set when the power is shut off. A simple way to do this is to let a PnP
BIOS know that you don't have a PnP OS and the BIOS will automatically do this each time you start. This
might cause problems in Windows (which is a PnP OS) if you start Windows with the BIOS thinking that
Windows is not a PnP OS. See Plug−and−Play−HOWTO.

Plug−and−Play (PnP) was designed to automate this io−irq configuring, but for Linux it initially made life
much more complicated. In modern Linux (2.4 kernels −−partially in 2.2 kernels), each device driver has to
do it's own PnP (using supplied software which it may utilize). There is unfortunately no centralized planning
for assigning IO addresses and IRQs as there is in MS Windows. But it usually works out OK in Linux
anyway.

Using a PnP BIOS to I0−IRQ Configure

While the explanation of how to use setpci or isapnp for io−irq configuring should come with such software,
this is not the case if you want to let a PnP BIOS do such configuring. Not all PnP BIOS can do this. The
BIOS usually has a CMOS menu for setting up the first two serial ports. This menu may be hard to find. For
an "Award" BIOS it was found under "chipset features setup" There is often little to choose from. Unless
otherwise indicated in a menu, these first two ports normally get set at the standard IO addresses and IRQs.
See Serial Port Device Names & Numbers

Whether you like it or not, when you start up a PC a PnP BIOS starts to do PnP (io−irq) configuring of
hardware devices. It may do the job partially and turn the rest over to a PnP OS (which Linux is in some
sense) or if thinks you don't have a PnP OS it may fully configure all the PnP devices but not configure the
device drivers. This is what you want but it's not always easy to figure out exactly what the PnP BIOS has
done.

If you tell the BIOS that you don't have a PnP OS, then the PnP BIOS should do the configuring of all PnP
serial ports −−not just the first two. An indirect way to control what the BIOS does (if you have Windows 9x
on the same PC) is to "force" a configuration under Windows. See Plug−and−Play−HOWTO and search for

 Modem−HOWTO

 6.9 Set IO Address & IRQ in the hardware (mostly for PnP) 35

"forced". It's easier to use the CMOS BIOS menu which may override what you "forced" under Windows.
There could be a BIOS option that can set or disable this "override" capability.

If you add a new PnP device, the BIOS should PnP configure it. It could even change the io−irq of existing
devices if required to avoid any conflicts. For this purpose, it keeps a list of non−PnP devices provided that
you have told the BIOS how these non−PnP devices are io−irq configured. One way to tell the BIOS this is by
running a program called ICU under DOS/Windows.

But how do you find out what the BIOS has done so that you set up the device drivers with this info? The
BIOS itself may provide some info, either in its setup menus of via messages on the screen when you turn on
your computer. See What is set in my serial port hardware?. Other ways of finding out is to use lspci for the
PCI bus or isapnp −−dumpregs for the ISA bus. The cryptic results it shows you may not be clear to a novice.

6.10 Giving the IRQ and IO Address to Setserial

Once you've set the IRQ and IO address in the hardware (or arranged for it to be done by PnP) you also need
to insure that the "setserial" command is run each time you start Linux. See the subsection Boot−time
Configuration

7. Configuring the Serial Driver (high−level) "stty"

7.1 Introduction

This configuring is normally done by your communications program such as wvdial. It may do much of it
without even letting you know what it's done. In olden days it was done with the "stty" utility. If you set
something with stty, the communications program may change the setting so it's usually best to just let the
communications program handle it. See What is stty ?

7.2 Hardware flow control (RTS/CTS)

See Flow Control for an explanation of it. You should always use hardware flow control if possible. Your
communication program or "getty" should have an option for setting it (and if you're in luck it might be
enabled by default). It needs to be set both inside your modem (by an init string or default) and in the device
driver. Your communication program should set both of these (if you configure it right).

If none of the above will fully enable hardware flow control. Then you must do it yourself. For the modem,
make sure that it's either done by the init string or is on by default. If you need to tell the device driver to do it
is best done on startup by putting it in a file that runs at boot−time. See the subsection Boot−time
Configuration You need to add the following to such a file for each serial port (example is ttyS2) you want to
enable hardware flow control on:

stty crtscts < /dev/ttyS2
or
stty −F /dev/ttyS2 crtscts

If you want to see if flow control is enabled do the following: In minicom (or the like) type AT&V (or ATI4
on 3Com modems) to see how the modem is configured and look for &K3 (or &H1 on 3Com modems) which
means hardware flow control. Then without exiting the communications program (such as minicom) see if the
device driver knows about it by typing: stty −F /dev/ttyS2 −a. Look for "crtscts" (without a disabling minus

 Modem−HOWTO

6.10 Giving the IRQ and IO Address to Setserial 36

sign).

7.3 Speed Settings

Besides flow control there is speed. See What Speed Should I Use with My Modem. There's also are parity
and bits−per−byte settings. Normally the port is set by the communications program at 8N1 (8−bits per byte,
No parity, and 1 stop bit). If you're running PPP then you must use 8N1. So if you get a complaint that it's not
8−bit clean then it's likely not 8N1 as it should be.

7.4 Ignore CD Setting: clocal

If the modem is not sending a CD signal and clocal is disabled (stty shows −clocal) then a program may not
be able to open the serial port. If the port can't open, the program may just hang, waiting (often in vain) for a
CD signal from the modem. Actually, a skilled programmer can write the program in such a way as to force
the port to open even when CD and −clocal say not to so it's not always a problem.

One way to avoid any possible problems is to send "AT&C" to the modem so that CD from the modem will
always be on. CD always−on is fine for dial−out but for dial−in the CD signal is sometimes (but rarely) used
to detected an incoming call.

Minicom sets clocal automatically when it starts up so there is no problem. But version 6.0.192 of Kermit
hung when I set −clocal and tried to "set line ...".

Here's a problem that existed prior to the year 2000 or thereabouts. It's since been fixed. If −clocal is set and
there is no CD signal, then the "stty" command will hang and there is seemingly no way to set clocal (except
by running minicom). But minicom will restore −clocal when it exits. One way to get out of this is to use
minicom to send the "AT&C" to the modem (to get the CD signal) and then exit minicom with no reset so that
the CD signal always remains on. Then you may use stty again.

7.5 What is stty ?

stty is something like setserial but it sets the speed (baud rate), hardware flow control, and other parameters
of a serial port. Typing "stty −F /dev/ttyS2 −a" should show you how ttyS2 is configured. Most of the stty
settings are for things that you never need to use with modems. Many of the setting are only needed for
Text−Terminals (and some are only needed for antique terminals of the 1970s). Your communication package
should automatically set up the several settings needed for modems. For this reason you normally don't need
to use stty so it's not covered much in this Modem−HOWTO. But stty is sometimes useful for
trouble−shooting. More is said about stty in the Serial−HOWTO or Text−Terminal−HOWTO..

8. Modem Configuration (excluding serial port)

8.1 Finding Your Modem

Before spending a lot of time deciding how to configure your modem, you first need to make sure it can be
found and that AT−commands and the like can be sent to it. So I suggest you first give it a very simple
configuration using the communication program you will be using on the port and see it it works. If this works
you may then want to improve on the configuration, If not then see My Modem is Physically There but Can't
be Found. A winmodem may be hard to find and will not work under Linux.

 Modem−HOWTO

7.3 Speed Settings 37

8.2 AT Commands

While the serial port on which a modem resides requires configuring, so does the modem itself. The modem is
configured by sending AT commands (or the like) to it on the same serial line that is used to send data.

Most modems use an AT command set. These are cryptic and short ASCII commands where all command
strings must be prefaced by the letters AT. AT means: ATtention, expect a command to follow. For example:
ATZ&K3<return> This is an AT−command string with two commands here: Z and &K3. Z is short for Z0
and a few modems require that you use Z0 instead of just Z. It's like this for other commands ending in 0. The
command string is terminated by a return character (use the <enter> key if you are manually typing it). A
string that's too long (40 or more characters) may not work on older modems. You may use either uppercase
or lowercase letters.

Unfortunately there are many different variations of the AT command set so that what works for one modem
may or may not work for another modem. Thus there is no guarantee that the AT commands given in this
section will work on your modem.

Such command strings are either automatically sent to the modem by communication programs or are
manually typed in by you. Most communication programs provide a screen where you may change (edit) and
save the init string that the communication program will use. The modem itself has a stored configuration
(profile) which is like a long init string. It represents the configuration of the modem when it's first tuned on.
You may change it to suit your taste. In most cases there are a few different such configurations (profiles) and
there are ways to designate one of them to be active.

If you have a manual for your modem (either on paper or on floppy disk) you might find AT−commands
there. 3Com modems (and others ??) have AT−Command help files built into the modem so if you type say
"AT$" to the modem it will display some "online help".

You can also find info on AT commands on the Internet. You should first try a site for your modem
manufacturer. If this doesn't work out then you can search the Internet using terms that are from AT
commands such as &C1, &D3, etc. This will tend to find sites that actually list AT−Commands instead of
sites that just talk about them in general. You might also try a few of the sites listed in the subsection Web
Sites. Be warned that the AT−commands for a different brand of modem may be somewhat different.

8.3 Init Strings: Saving and Recalling

The examples given in this subsection are from the Hayes AT modem command set. All command strings
must be prefaced by the two letters AT. For example: AT&C1&D3^M (^M is the return character). When a
modem is powered on, it automatically configures itself with one of the configurations it has stored in its
non−volatile memory. If this configuration is satisfactory there is nothing further to do.

If it's not satisfactory, then one may either alter the stored configuration or configure the modem each time
you use it by sending it a string of commands known as an "init string" (= initialization string). Normally, a
communication program does this. What it sends will depend on how you configured the communications
program. Your communication program should allow you to edit the init string and change it to whatever you
want. Sometimes the communications program will let you select the model of your modem and then it will
use an init string that it thinks is best for that modem.

The configuration of the modem when it's first powered on may be expressed by an init string. You might
think of this as the default "string" (called a profile). If your communications program sends the modem

 Modem−HOWTO

8.2 AT Commands 38

another string (the init string), then this string will modify the default configuration. For example, if the init
string only contains two commands, then only those two items will be changed. However, some commands
will recall a stored profile from inside the modem so a single such command in the init string can thereby
change everything in the configuration.

Modern modems have a few different stored profiles to choose from that are stored in the modem's
non−volatile memory (it's still there when you turn it off). In my modem there are two factory profiles (0 and
1, neither of which you can change) and two user defined profiles (0 and 1) that the user may set and store.
Your modem may have more. To view some of these profiles send the command &V. At power−up one of the
user−defined profiles is loaded. For example, if you type the command &Y0 (just Y0 for a 3Com modem)
then in the future profile 0 will be used at power−on.

There are also commands to load (activate) any of the stored profiles. Such a load command may be put in an
init string. Of course if it loads the same profile that was automatically loaded at power−up, nothing is
changed (unless the active profile has been modified since power−up). Since your profile could have thus
been modified it's a good idea to use some kind of an init string even if it does nothing more than load a stored
profile.

Examples of loading saved profiles:
Z0 loads user−defined profile 0 and resets (hangs up, etc.)
&F1 loads factory profile 1

Once you have sent commands to the modem to configure it the way you want (such as loading a factory
profile and modifying it a little) you may save this as a user−defined profile:
&W0 saves the current configuration to user−profile 0.

Many people don't bother saving a good configuration in their modem, but instead, send the modem a longer
init string each time the modem is used. Another method is to restore the factory default by &F1 at the start of
the init string and then modify it a little by adding a few other commands to the end of the init string. Since
there is no way to modify the factory default this prevents anyone from changing the configuration by
modifying (and saving) the user−defined profile.

You may choose an init string supplied by someone else that they think is right for your modem. Some
communication programs have a library of init strings to select from. The most difficult method (and one
which will teach you the most about modems) is to study the modem manual and write one yourself. You
could save this configuration inside the modem so that you don't need an init string. A third alternative is to
start with an init string that someone else wrote, but modify it to suit your purposes.

If you look at init strings used by communication programs you may see symbols which are not valid modem
commands. These symbols are commands to the communication program itself and will not be sent to the
modem. For example, ~ may mean to pause briefly.

Where is my "init string" so I can modify it ?

This depends on your communication program (often a PPP program). If this is the latest version of
Modem−HOWTO send me info for other cases.

Gnome: run pppsetup•
wvdial: edit /etc/wvdial.conf•
minicom: hit ^Ao (or possibly ALT−o), then select "Modem and Dialing"•

 Modem−HOWTO

Where is my "init string" so I can modify it ? 39

8.4 Other AT Modem Commands

For dial−in see Dial−in Modem Configuration. The rest of this section is mostly what was in the old
Serial−HOWTO. All strings must start with AT. Here's a few Hayes AT codes that should be in the string (if
they are not set by using a factory default or by a saved configuration).

E1 command echo ON•
Q0 result codes are reported•
V1 result codes are verbose•
S0=0 never answer (uugetty does this with the WAITFOR option)•

Here's some more AT commands for special purposes:

&C1 CD is only on when you're connected•
&S0 DSR is always on•
X3 Dial even if there is no dialtone (Use where dial−tones don't exist).•

Note: to get his old USR Courier V.34 modem to reset correctly when DTR drops, Greg Hankins had to set
&D2 and S13=1 (this sets bit 0 of register S13). This has been confirmed to work on USR Sportster V.34
modems as well.

Note: some old Supra modems treat CD differently than other modems. If you are using a Supra, try setting
&C0 and not&C1. You must also set &D2 to handle DTR correctly.

8.5 Blacklisting

If phone number is dialed a few times with no success, some modems may blacklist a phone number. After a
certain time you may try again. Some countries require this to reduce needless repeated dialing. To view the
blacklist try %B. To delete the blacklist use these AT commands:

SR Robotics o 3COM: s40=2 or if NG try s40=7•
Lucent: %t21,18,0•
Rockwell: %tcb•
Cirrus Logic: *nc9•

8.6 What AT Commands are Now Set in my Modem?

You may try to use minicom for viewing your modem profile. It's best not to have any other process running
on the modem port when you do this. If you have set up minicom for your modem, then you may type on the
command line: minicom −o to start minicom without restoring the saved modem profile. Then type at&v
(or atI4 on 3Com modems) to display the profile. To exit minicom without disturbing this profile, use the q
(quit) command for exiting without resetting.

The above may not work for various reasons. If the modem has been set not to echo result codes it may not
even display any profile. If there is another process running on the modem port at the same time, some of
what the modem sends to you is likely to be read by the other process so you will see only part of the profile.
Is there some way to temporarily stop the other process on the port so it will not interfere? I tried the "stop"
signal using the "kill" command but it didn't work. If this is the latest version of this HOWTO, let me know if
you find a way to do it.

 Modem−HOWTO

 8.4 Other AT Modem Commands 40

If you have at least one process running on the modem port and kill them, the modem's profile may be reset so
you will not observe what the original profile was. This will happen if you kill getty (or it's replacements:
login or bash) and have &D3 set. The killing of getty (or the like) will drop DTR and reset the modem's
profile to the power−on state. To keep getty from respawning when killed, comment it out in /etc/inittab and
do an "init q".

8.7 Modem States (or Modes)

Since the channel for sending AT commands to the modem is the same channel that is used for the flow of
data (files, packets, etc.) then it's important to cleanly separate the AT commands from the data.

When the modem is first turned on it's in the command mode (also called terminal mode, idle state or
AT−command mode). Anything sent to it from the PC is assumed to be an AT command and not data. Then if
a dial command is sent to it (ATD...), it dials and connects to another modem. It's now in the on−line data
mode (connected) and sends and receives data (such as Internet pages). In this mode, any AT command one
trys to send it will not work but will be transmitted to the other modem instead. Except for the escape
command. This is +++ with a minimum time delay both at the start and end. The time delay allows the
modem to determine that it is likely a real escape and not just +++ in a file being transmitted.

So we have two states so far: AT−command and on−line data. But there is a third important state which is sort
of a combination of these two. It's the on−line command mode. This is when the modem maintains a
connection (without sending/receiving data) but anything sent from the PC is interpreted as an AT command.
This is the state reached with a +++ escape signal or by a DTR drop from the PC provided the &D1 has been
set. Then one can send AT commands to the modem including commands which will leave this state and go to
one of the other two states.

There are other states also: dialing state and handshaking state but they normally lead to the connected
(on−line) state. If they don't then the modem should hang up, thereby returning to the initial AT−command (or
idle) state.

9. Serial Port Devices /dev/ttyS2, (or /dev/ttys/2) etc.

For creating devices in the device directory see: the Serial−HOWTO: "Creating Devices In the /dev
directory".

9.1 Devfs (The new Device File System)

This is a new type of device interface to Linux. It's optional starting with kernel 2.4. It's more efficient than
the conventional interface and makes it easy to deal with a huge number of devices. The device names have
all changed as well. But there's an option to continue using the old names. For a detailed description of it see:
http://www.atnf.csiro.au/~rgooch/linux/docs/devfs.html Also see the kernel documentation tree:
filesystems/devfs.

The name changes (if used) are: ttyS2 becomes tts/2 (Serial port), tty3 becomes vc/3 (Virtual Console), ptyp1
becomes pty/m1 (PTY master), ttyp2 becomes pty/s2 (PTY slave). "tts" looks like a directory which contains
devices "files": 0, 1, 2, etc. All of these new names should still be in the /dev directory although optionally
one may put them elsewhere.

 Modem−HOWTO

8.7 Modem States (or Modes) 41

http://www.atnf.csiro.au/~rgooch/linux/docs/devfs.html

9.2 Serial Port Device Names & Numbers

Devices in Linux have major and minor numbers (unless you use the new devfs). The serial port ttySx
(x=0,1,2, etc.) has major number 4. You may see this (and the minor numbers too) by typing: "ls −l ttyS*" in
the /dev directory.

There formerly was a "cua" name for each serial port and it behaved just a little differently. For example,
ttyS2 would correspond to cua2. It was mainly used for modems. The cua major number was 5 and minor
numbers started at 64. You may still have the cua devices in your /dev directory but they are now deprecated.
For details see Modem−HOWTO, section: cua Device Obsolete.

Dos/Windows use the COM name while the setserial program uses tty00, tty01, etc. Don't confuse these
with dev/tty0, dev/tty1, etc. which are used for the console (your PC monitor) but are not serial ports. The
table below is for the "standard" case (but yours could be different). The major/minor numbers don't exist with
the devfs. For the PCI bus the IO addresses are different.

 ISA IO devfs usb
 dos major minor address devfs devfs usb acm modem
COM1 /dev/ttyS0 4, 64; 3F8 /dev/tts/0 /dev/usb/tts/0 /dev/usb/acm/0
COM2 /dev/ttyS1 4, 65; 2F8 /dev/tts/1 /dev/usb/tts/1 /dev/usb/acm/1
COM3 /dev/ttyS2 4, 66; 3E8 /dev/tts/2 /dev/usb/tts/2 /dev/usb/acm/2
COM4 /dev/ttyS3 4, 67; 2E8 /dev/tts/3 /dev/usb/tts/3 /dev/usb/acm/3

9.3 USB (Universal Serial Bus) Ports

The serial ports on the USB are: /dev/ttyUSB0, /dev/ttyUSB1, etc. The devfs names for these are:
/dev/usb/tts/0, /dev/usb/tts/1, etc. For many modems they are /dev/usb/acm/0, etc. (in devfs notation). For
more info see the usb subdirectory in the kernel documentation directory for files: acm and usb−serial.

9.4 Link ttySN to /dev/modem

On some installations, two extra devices will be created, /dev/modem for your modem and /dev/mouse
for a mouse. Both of these are symbolic links to the appropriate serial device in /dev which you specified
during the installation Except if you have a bus mouse, then /dev/mouse will point to the bus mouse
device).

Formerly (in the 1990s) the use of /dev/modem was discouraged since lock files might not realize that it
was really say /dev/ttyS2. The newer lock file system doesn't fall into this trap so it's now OK to use such
links.

9.5 cua Device Obsolete

Each ttyS device has a corresponding cua device. But the cua device is deprecated so it's best to use ttyS
(unless cua is required). There is a difference between cua and ttyS but a savvy programmer can make a ttyS
port behave just like a cua port so there is no real need for the cua anymore. Except that some older programs
may need to use the cua.

What's the difference? The main difference between cua and ttyS has to do with what happens in a
C−program when an ordinary "open" command tries to open the port. If a cua port has been set to check
modem control signals, the port can be opened even if the CD modem control signal says not to. Astute

 Modem−HOWTO

 9.2 Serial Port Device Names & Numbers 42

programming (by adding additional lines to the program) can force a ttyS port to behave this way also. But a
cua port can be more easily programmed to open for dialing out on a modem even when the modem fails to
assert CD (since no one has called into it and there's no carrier). That's why cua was once used for dial−out
and ttyS used for dial−in.

Starting with Linux kernel 2.2, a warning message is put in the kernel log when one uses cua. This is an omen
that cua is defunct and should be avoided if possible.

10. Interesting Programs You Should Know About

10.1 What is setserial ?

This part is in 3 HOWTOs: Modem, Serial, and Text−Terminal. There are some minor differences, depending
on which HOWTO it appears in.

Introduction

The setserial program doesn't seem to work with serial ports used with linmodems such as ttySHCF0. If you
have a Laptop (PCMCIA) don't use setserial until you read Laptops: PCMCIA. setserial is a
program which allows you to tell the device driver software the I/O address of the serial port, which interrupt
(IRQ) is set in the port's hardware, what type of UART you have, etc. Since there's a good chance that the
serial ports will be automatically detected and set, many people never need to use setserial. In any case
setserial will not work without either serial support built into the kernel or loaded as a module. The module
may get loaded automatically if you (or a script) tries to use setserial.

Setserial can also show how the driver is currently set. In addition, it can be made to probe the hardware I0
port addresses to try to determine the UART type and IRQ, but this has severe limitations. See Probing. Note
that it can't set the IRQ or the port address in the hardware of PnP serial ports (but the plug−and−play features
of the serial driver may do this). It can't read the PnP data stored in configuration registers in the hardware.

If you only have one or two built−in serial ports, they will usually get set up correctly without using setserial.
Otherwise, if you add more serial ports (such as a modem card) you may need to deal with setserial. Besides
the man page for setserial, check out info in /usr/doc/setserial.../ or
/usr/share/doc/setserial. It should tell you how setserial is handled in your distribution of Linux.

Setserial is often run automatically at boot−time by a start−up shell−script for the purpose of assigning
IRQs, etc. to the driver. Setserial will only work if the serial module is loaded (or if the equivalent was
compiled into your kernel). If the serial module gets unloaded later on, the changes previously made by
setserial will be forgotten by the kernel. But recent (2000) distributions may contain scripts that save and
restore this. If not, then setserial must be run again to reestablish them. In addition to running via a
start−up script, something akin to setserial also runs earlier when the serial module is loaded (or the
like). Thus when you watch the start−up messages on the screen it may look like it ran twice, and in fact it
has.

Setserial does not set either IRQ's nor I/O addresses in the serial port hardware itself. That is done either by
jumpers or by plug−and−play. You must tell setserial the identical values that have been set in the hardware.
Do not just invent some values that you think would be nice to use and then tell them to setserial. However, if
you know the I/O address but don't know the IRQ you may command setserial to attempt to determine the
IRQ.

 Modem−HOWTO

10. Interesting Programs You Should Know About 43

You can see a list of possible commands by just typing setserial with no arguments. This fails to show
you the one−letter options such as −v for verbose which you should normally use when troubleshooting. Note
that setserial calls an IO address a "port". If you type:

setserial −g /dev/ttyS*

you'll see some info about how that device driver is configured for your ports. Note that where it says
"UART: unknown" it probably means that no uart exists. In other words you probably have no such serial
port and the other info shown about the port is meaningless and should be ignored. If you really do have such
a serial port, setserial doesn't recognize it and that needs to be fixed.

If you add −a to the option −g you will see more info although few people need to deal with (or understand)
this additional info since the default settings you see usually work fine. In normal cases the hardware is set up
the same way as "setserial" reports, but if you are having problems there is a good chance that "setserial" has
it wrong. In fact, you can run "setserial" and assign a purely fictitious I/O port address, any IRQ, and whatever
uart type you would like to have. Then the next time you type "setserial ..." it will display these bogus values
without complaint. They will also be officially registered with the kernel as displayed (at the top of the screen)
by the "scanport" command (Debian). Of course the serial port driver will not work correctly (if at all) if you
attempt to use such a port. Thus when giving parameters to "setserial" anything goes. Well almost. If you
assign one port a base address that is already assigned (such as 3e8) it may not accept it. But if you use 3e9 it
will accept it. Unfortunately 3e9 is already assigned since it is within the range starting at base address 3e8.
Thus the moral of the story is to make sure your data is correct before assigning resources with setserial.

While assignments made by setserial are lost when the PC is powered off, a configuration file may restore
them (or a previous configuration) when the PC is started up again. In newer versions, what you change by
setserial may get automatically saved to a configuration file. In older versions, the configuration file only
changes if you edit it manually so the configuration always remains the same from boot to boot. See
Configuration Scripts/Files

Probing

Prior to probing with "setserial", one may run the "scanport" (Debian) command to check all possible ports in
one scan. It makes crude guesses as to what is on some ports but doesn't determine the IRQ. But it's a fast first
start. It may hang your PC but so far it's worked fine for me. Note that non−Debian distributions don't seem to
supply "scanport". Is there an another scan program?

With appropriate options, setserial can probe (at a given I/O address) for a serial port but you must guess
the I/O address. If you ask it to probe for /dev/ttyS2 for example, it will only probe at the address it thinks
ttyS2 is at (2F8). If you tell setserial that ttyS2 is at a different address, then it will probe at that address, etc.
See Probing

The purpose of this is to see if there is a uart there, and if so, what its IRQ is. Use "setserial" mainly as a last
resort as there are faster ways to attempt it such as wvdialconf to detect modems, looking at very early
boot−time messages, or using pnpdump −−dumpregs. To try to detect the physical hardware use for
example :
setserial /dev/ttyS2 −v autoconfig
If the resulting message shows a uart type such as 16550A, then you're OK. If instead it shows "unknown"
for the uart type, then there is supposedly no serial port at all at that I/O address. Some cheap serial ports don't
identify themselves correctly so if you see "unknown" you still might have a serial port there.

 Modem−HOWTO

 Probing 44

Besides auto−probing for a uart type, setserial can auto−probe for IRQ's but this doesn't always work right
either. In one case it first gave the wrong irq but when the command was repeated it found the correct irq. In
versions of setserial >= 2.15, the results of your last probe test could be automatically saved and put into the
configuration file /etc/serial.conf or /var/lib/serial.conf which will be used next time you
start Linux. At boot−time when the serial module loads (or the like), a probe for UARTs is made
automatically and reported on the screen. But the IRQs shown may be wrong. The second report of the same
is the result of a script which usually does no probing and thus provides no reliable information as to how the
hardware is actually set. It only shows configuration data someone wrote into the script or data that got saved
in /etc/serial.conf.

It may be that two serial ports both have the same IO address set in the hardware. Of course this is not
permitted but it sometimes happens anyway. Probing detects one serial port when actually there are two.
However if they have different IRQs, then the probe for IRQs may show IRQ = 0. For me it only did this if I
first used setserial to give the IRQ a fictitious value.

Boot−time Configuration

When the kernel loads the serial module (or if the "module equivalent" is built into the kernel) then only
ttyS{0−3} are auto−detected and the driver is set to use only IRQs 4 and 3 (regardless of what IRQs are
actually set in the hardware). You see this as a boot−time message just like as if setserial had been run.

To correct possible errors in IRQs (or for other reasons) there may be a file somewhere that runs setserial
again. Unfortunately, if this file has some IRQs wrong, the kernel will still have incorrect info about the IRQs.
This file should run early at boot−time before any process uses the serial port. In fact, your distribution may
have set things up so that the setserial program runs automatically from a start−up script at boot−time. More
info about how to handle this situation for your particular distribution might be found in file named
"setserial..." or the like located in directory /usr/doc/ or /usr/share/doc/.

Before modifying a configuration file, you can test out a "proposed" setserial command by just typing it
on the command line. In some cases the results of this use of setserial will automatically get saved in
/etc/serial.conf when you shutdown. So if it worked OK (and solved your problem) then there's no need to
modify any configuration file. See New configuration method using /etc/serial.conf.

Configuration Scripts/Files

Your objective is to modify (or create) a script file in the /etc tree that runs setserial at boot−time. Most
distributions provide such a file (but it may not initially reside in the /etc tree). In addition, setserial 2.15 and
higher often have an /etc/serial.conf file that is used by the above script so that you don't need to directly edit
the script that runs setserial. In addition just using setserial on the command line (2.15+) may ultimately alter
this configuration file.

So prior to version 2.15 all you do is edit a script. After 2.15 you may need to either do one of three things: 1.
edit a script. 2. edit /etc/serial.conf or 3. run "setserial" on the command line which may result in
/etc/serial.conf automatically being edited. Which one of these you need to do depends on both your
particular distribution, and how you have set it up.

Edit a script (required prior to version 2.15)

Prior to setserial 2.15 (1999) there was no /etc/serial.conf file to configure setserial. Thus you need to find the
file that runs "setserial" at boot time and edit it. If it doesn't exist, you need to create one (or place the

 Modem−HOWTO

 Boot−time Configuration 45

commands in a file that runs early at boot−time). If such a file is currently being used it's likely somewhere in
the /etc directory−tree. But Redhat <6.0 has supplied it in /usr/doc/setserial/ but you need to move it to the /etc
tree before using it. You might use "locate" to try to find such a file. For example, you could type: locate
"*serial*".

The script /etc/rc.d/rc.serial was commonly used in the past. The Debian distribution used
/etc/rc.boot/0setserial. Another file once used was /etc/rc.d/rc.local but it's not a good
idea to use this since it may not be run early enough. It's been reported that other processes may try to open
the serial port before rc.local runs resulting in serial communication failure. Today it's most likely in
/etc/init.d/ but it isn't normally intended to be edited.

If such a file is supplied, it should contain a number of commented−out examples. By uncommenting some of
these and/or modifying them, you should be able to set things up correctly. Make sure that you are using a
valid path for setserial, and a valid device name. You could do a test by executing this file manually (just
type its name as the super−user) to see if it works right. Testing like this is a lot faster than doing repeated
reboots to get it right.

For versions >= 2.15 (provided your distribution implemented the change, Redhat didn't) it may be more
tricky to do since the file that runs setserial on startup, /etc/init.d/setserial or the like was not intended to be
edited by the user. See New configuration method using /etc/serial.conf.

If you want setserial to automatically determine the uart and the IRQ for ttyS3 you would add something like:

/sbin/setserial /dev/ttyS3 auto_irq skip_test autoconfig

Do this for every serial port you want to auto configure. Be sure to give a device name that really does exist
on your machine. In some cases this will not work right due to the hardware. If you know what the uart and
irq actually are, you may want to assign them explicitly with "setserial". For example:

/sbin/setserial /dev/ttyS3 irq 5 uart 16550A skip_test

New configuration method using /etc/serial.conf

Prior to setserial version 2.15, the way to configure setserial was to manually edit the shell−script that ran
setserial at boot−time. See Edit a script (after version 2.15: perhaps not). Starting with version 2.15 (1999) of
setserial this shell−script is not edited but instead gets its data from a configuration file:
/etc/serial.conf. Furthermore you may not even need to edit serial.conf because using the "setserial"
command on the command line may automatically cause serial.conf to be edited appropriately.

This was intended so that you don't need to edit any file in order to set up (or change) what setserial does each
time that Linux is booted. But there are serious pitfalls because it's not really "setserial" that edits serial.conf.
Confusion is compounded because different distributions handle this differently. In addition, you may modify
it so that it works differently.

What often happens is this: When you shut down your PC the script that runs "setserial" at boot−time is run
again, but this time it only does what the part for the "stop" case says to do: It uses "setserial" to find out what
the current state of "setserial" is, and it puts that info into the serial.conf file. Thus when you run
"setserial" to change the serial.conf file, it doesn't get changed immediately but only when and if you shut
down normally.

 Modem−HOWTO

 New configuration method using /etc/serial.conf 46

Now you can perhaps guess what problems might occur. Suppose you don't shut down normally (someone
turns the power off, etc.) and the changes don't get saved. Suppose you experiment with "setserial" and forget
to run it a final time to restore the original state (or make a mistake in restoring the original state). Then your
"experimental" settings are saved.

If you manually edit serial.conf, then your editing is destroyed when you shut down because it gets changed
back to the state of setserial at shutdown. There is a way to disable the changing of serial.conf at shutdown
and that is to remove "###AUTOSAVE###" or the like from first line of serial.conf. In at least one
distribution, the removal of "###AUTOSAVE###" from the first line is automatically done after the first time
you shutdown just after installation. The serial.conf file should contain some comments to explain this.

The file most commonly used to run setserial at boot−time (in conformance with the configuration file) is now
/etc/init.d/setserial (Debian) or /etc/init.d/serial (Redhat), or etc., but it should not normally be edited. For
2.15, Redhat 6.0 just had a file /usr/doc/setserial−2.15/rc.serial which you have to move to /etc/init.d/ if you
want setserial to run at boot−time.

To disable a port, use setserial to set it to "uart none". The format of /etc/serial.conf appears to be just
like that of the parameters placed after "setserial" on the command line with one line for each port. If you
don't use autosave, you may edit /etc/serial.conf manually.

BUG: As of July 1999 there is a bug/problem since with ###AUTOSAVE### only the setserial parameters
displayed by "setserial −Gg /dev/ttyS*" get saved but the other parameters don't get saved. Use the −a flag to
"setserial" to see all parameters. This will only affect a small minority of users since the defaults for the
parameters not saved are usually OK for most situations. It's been reported as a bug and may be fixed by now.

In order to force the current settings set by setserial to be saved to the configuration file (serial.conf) without
shutting down, do what normally happens when you shutdown: Run the shell−script
/etc/init.d/{set}serial stop. The "stop" command will save the current configuration but the
serial ports still keep working OK.

In some cases you may wind up with both the old and new configuration methods installed but hopefully only
one of them runs at boot−time. Debian labeled obsolete files with "...pre−2.15".

IRQs

By default, both ttyS0 and ttyS2 will share IRQ 4, while ttyS1 and ttyS3 share IRQ 3. But actually sharing
serial interrupts (using them in running programs) is not permitted unless you: 1. have kernel 2.2 or better, and
2. you've complied in support for this, and 3. your serial hardware supports it. See

Interrupt sharing and Kernels 2.2+ If you only have two serial ports, ttyS0 and ttyS1, you're still OK since
IRQ sharing conflicts don't exist for non−existent devices.

If you add an internal modem and retain ttyS0 and ttyS1, then you should attempt to find an unused IRQ and
set it both on your serial port (or modem card) and then use setserial to assign it to your device driver. If IRQ
5 is not being used for a sound card, this may be one you can use for a modem. To set the IRQ in hardware
you may need to use isapnp, a PnP BIOS, or patch Linux to make it PnP. To help you determine which spare
IRQ's you might have, type "man setserial" and search for say: "IRQ 11".

 Modem−HOWTO

IRQs 47

Laptops: PCMCIA

If you have a Laptop, read PCMCIA−HOWTO for info on the serial configuration. For serial ports on the
motherboard, setserial is used just like it is for a desktop. But for PCMCIA cards (such as a modem) it's a
different story. The configuring of the PCMCIA system should automatically run setserial so you shouldn't
need to run it. If you do run it (by a script file or by /etc/serial.conf) it might be different and cause trouble.
The autosave feature for serial.conf shouldn't save anything for PCMCIA cards (but Debian did until 2.15−7).
Of course, it's always OK to use setserial to find out how the driver is configured for PCMCIA cards.

10.2 What is isapnp ?

isapnp is a program to configure Plug−and−Play (PnP) devices on the ISA bus including internal modems.
It comes in a package called "isapnptools" and includes another program, "pnpdump" which finds all your
ISA PnP devices and shows you options for configuring them in a format which may be added to the PnP
configuration file: /etc/isapnp.conf. It may also be used with the −−dumpregs option to show the current IO
address and IRQ of the modem's serial port. The isapnp command may be put into a startup file so that it runs
each time you start the computer and thus will configure ISA PnP devices. It is able to do this even if your
BIOS doesn't support PnP. See Plug−and−Play−HOWTO.

10.3 What is wvdialconf ?

wvdialconf will try to find which serial port (ttyS?) has a modem on it. It also creates a configuration
program for the wvdial program. wvdial is used for simplified dialing out using the PPP protocol to an ISP.
But you don't need to install PPP in order to use wvdialconf. It will only find modems which are not in
use. It will also automatically devise a "suitable" init strings but sometimes gets it wrong. Since this command
has no options, it's simple to use but you must give it the name of a file to put the init string (and other data)
into. For example type: wvdialconf my_config_file_name.

11. Trying Out Your Modem (Dialing Out)

11.1 Are You Ready to Dial Out ?

Once you've plugged in your modem and know which serial port it's on you're ready to try using it. If you
already have an account with an ISP to connect to the Internet, you could try using a program like "wvdial" to
connect to the Internet using the PPP protocol.

As an alternative to taking one big step using PPP to connect to the Internet, you could do a two step process:
First just test out your modem without using PPP (using Minicom or Kermit). Then if your modem works OK,
use "wvdial" or other ppp dialer to connect to the Internet. A different strategy is to first try a ppp dialer and
then if that doesn't work out, fallback to Minicom or Kermit to see if your modem works OK. Knowing how
to use either Minicom or Kermit is handy for dialing out to some places directly without going thru the
Internet. If you are going to use Minicom or Kermit you must find a phone number to dial that will accept
phone calls from a computer (without using PPP). Perhaps a local library has such a phone number for its
on−line catalog.

Then make sure you are ready to phone. Do you know what serial port (such as ttyS2) your modem is on?
You should have found this out when you io−irq configured your serial ports. Have you decided what speed
you are going to use for this port? See Speed Table for a quick selection or What Speed Should I Use with My

 Modem−HOWTO

 Laptops: PCMCIA 48

Modem for more details. If you have no clue of what speed to set, try setting it a few times faster than the
advertised speed of your modem. Also remember that if you see a menu where an option is "hardware flow
control" and/or "RTS/CTS" or the like, select it. Is a live telephone cable plugged in to your modem? You
may want to connect this cable to a real telephone to make sure that it can produce a dial tone.

Now you need to select a communication (dialing) program to use to dial out. Simple dialing programs
include: minicom, seyon (X Window), and kermit. Internet dialing programs (using PPP) include wvdial,
kppp (for KDE), gnome−ppp (for gnome). See section Communications Programs about some
communications programs. Three examples are presented next: Dialing Out with wvdial Dialing Out with
Minicom and Dialing Out with Kermit

11.2 Dialing Out with wvdial

Wvdial is a program with not only dials out, but starts PPP and logs you in to an ISP where you get to the
Internet. Wvdial may be configured during the installation process or by using the program "wvdialconf". See
the man pages for both "wvdialconf" and "wvdial". However, before using wvdial you must do two other
tasks not covered by the wvdial documentation:

set up your network on your PC. The old HOWTO, "ISP−Hookup−HOWTO" has some info on how
to do this but fails to mention wvdial which replaces "chatscripts".

•

configure your browser•

11.3 Dialing Out with Minicom

Minicom comes with most Linux distributions. To configure it you should be the root user. As root, type
"minicom −s" to configure. This will take you directly to the configuration (set−up) menus. This allows you to
use the configuration immediately. If you just type "minicom" and then configure, you'll need to leave and
restart minicom for the configuration to take effect. Within minicom type ^A to see the bottom status line.
This shows to type ^A Z for help (you've already typed the ^A so just type z).

Most of the options don't need to be set for just simply dialing out. To configure you have to supply a few
basic items: the name of the serial port your modem is on such as /dev/ttyS2 and the speed such as 115200.
These are set at the serial port menu. Go to it and set them. Also (if possible) set hardware flow control
(RTS/CTS). Then save them. When typing in the speed, you should also see something like "8N1" which you
should leave alone. It means: 8−bit bytes, No parity, 1 stop−bit appended to each byte. If you can't find the
speed you want, a lower speed will always work for a test. Exit (hit return) when done and save the
configuration as default (dfl) using the menu. Unless you've used the −s option when you called minicom,
you'll need to exit minicom and start it again so it can now find the serial port and initialize the modem.

Now you are ready to dial. But first at the main screen you get after you first type "minicom" make sure
there's a modem there by typing AT and then hit the <enter> key. It should display OK. If it doesn't something
is wrong and there is no point of trying to dial.

If you got the "OK" go back to help and select the dialing directory. You may edit it and type in a phone
number, etc. into the directory and then select "dial" to dial it. Alternatively, you may just dial manually (by
selecting "manual" and then type the number at the keyboard). If it doesn't work, carefully note any error
messages and try to figure out what went wrong.

 Modem−HOWTO

 11.2 Dialing Out with wvdial 49

11.4 Dialing Out with Kermit

You can find the latest version of kermit at http://www.columbia.edu/kermit/. For example,
say your modem was on ttyS3, and its speed was 115200 bps. You would do the following:

linux# kermit
C−Kermit 6.0.192, 6 Sep 96, for Linux
 Copyright (C) 1985, 1996,
 Trustees of Columbia University in the City of New York.
Default file−transfer mode is BINARY
Type ? or HELP for help.
C−Kermit>set line /dev/ttyS3
C−Kermit>set carrier−watch off
C−Kermit>set speed 115200
/dev/ttyS3, 115200 bps
C−Kermit>c
Connecting to /dev/ttyS3, speed 115200.
The escape character is Ctrl−\ (ASCII 28, FS)
Type the escape character followed by C to get back,
or followed by ? to see other options.
ATE1Q0V1 ; you type this and then the Enter key
OK ; modem should respond with this

If your modem responds to AT commands, you can assume your modem is working correctly on the Linux
side. Now try calling another modem by typing:

ATDT7654321

where 7654321 is a phone number. Use ATDP instead of ATDT if you have a pulse line. If the call goes
through, your modem is working.

To get back to the kermit prompt, hold down the Ctrl key, press the backslash key, then let go of the Ctrl
key, then press the C key:

Ctrl−\−C
(Back at linux)
C−Kermit>quit
linux#

This was just a test using the primitive "by−hand" dialing method. The normal method is to let kermit do
the dialing for you with its built−in modem database and automatic dialing features, for example using a US
Robotics (USR) modem:

linux# kermit
C−Kermit 6.0.192, 6 Sep 1997, for Linux
 Copyright (C) 1985, 1996,
 Trustees of Columbia University in the City of New York.
Default file−transfer mode is BINARY
Type ? or HELP for help
C−Kermit>set modem type usr ; Select modem type
C−Kermit>set line /dev/ttyS3 ; Select communication device
C−Kermit>set speed 115200 ; Set the dialing speed
C−Kermit>dial 7654321 ; Dial
 Number: 7654321
 Device=/dev/ttyS3, modem=usr, speed=115200
 Call completed.<BEEP>
Connecting to /dev/ttyS3, speed 115200

 Modem−HOWTO

 11.4 Dialing Out with Kermit 50

http://www.columbia.edu/kermit/

The escape character is Ctrl−\ (ASCII 28, FS).
Type the escape character followed by C to get back,
or followed by ? to see other options.

Welcome to ...

login:

12. Dial−In

12.1 Dial−In Overview

Dial−in is where you set up your PC so that others may dial in to your PC (at your phone number) and use
your PC. Unfortunately some use the term "dial−in" when what they actually mean is just the opposite:
dial−out. Dial−in works like this. Someone with a modem dials your telephone number. Your modem answers
the phone ring and connects. Once the caller is connected the getty program is notified and starts the login
process for the caller. After the caller has logged in, the caller then may use your PC. It could be almost as if
they were sitting at the monitor−console.

The caller may use a script to automatically log in. This script will be of the expect−send type. For example it
expects "login:" and then (after it detects "login:") will send the users login name. It next expects the password
and then sends the password, etc. Then once the user has been automatically logged in, the /etc/passwd
(password file) might specify that a shell (such as bash) will be started for the user. Or it might specify that
PPP is to start so that the user may be connected to the Internet. See the PPP−HOWTO for more details. The
program that you use at your PC to handle dialin is called getty or mgetty. See Getty

An advanced getty program such as mgetty can watch to see if PPP is started by the PC on the other end. If so,
the login prompt would be skipped, a PPP connection would be made, and login would take place
automatically over the PPP connection.

12.2 What Happens when Someone Dials In ?

Here's a more detailed description of dialin. This all assumes that you are using either mgetty or uugetty.
Agetty is inferior and doesn't work exactly as described below (see About agetty)

For dialin to work, the modem must be listening for a ring and getty must be running and ready to respond to
the call. Your modem is normally listening for incoming calls, but what it does when it gets a ring depends on
how it's configured. The modem can either automatically answer the phone or not directly answer it. In the
latter case the modem sends a "RING" message to getty and then getty tells the modem to answer the ring. In
either case, it may be set up to answer on say the 4th ring. This means that if the call is not for the modem, one
must walk/run to the phone and pick it up manually before the 4th ring. Then they can talk to the other person.
If they get to the phone too late they will hear the screeching noise of the modem which has answered the call.

Once the modem answers the call it sends tones to the other modem (and conversely). The two modems
negotiate how they will communicate and when this is completed your modem sends a "CONNECT" message
(or the like) to getty. When getty gets this message, it sends a login prompt out the serial port. Once a
user name is given to this prompt getty may just call on a program named login to handle the logging in
from there on. While getty usually starts running at boot−time it should wait until a connection is made
before sending out a "login" prompt.

 Modem−HOWTO

 12. Dial−In 51

Now for more details on the two methods of answering the call. For the first method where the modem
automatically answers the call, the number of times it will ring before answering is controlled by the S0
register of the modem. If S0 is set to 3, the modem will automatically answer on the 3rd ring. If it's set to 0
then the modem will only answer the call if getty sends it an "A" (= Answer) AT command to the modem
while the phone is ringing. (Actually an "ATA" is sent since all modem commands are prefixed by "AT".)
This is known as "manual" answering since the modem itself doesn't do it automatically (but getty does). You
might think it best to utilize the ability of the modem hardware to automatically answer the call, but it's
actually better if getty answers it "manually".

For the "manual" answer case, getty opens the port at boot−time and listens. When the phone rings, a
"RING" message is sent to the listening getty. Then if getty wants to answer this ring, it sends the
modem an "A" command. Note that getty may be set to answer only after say 4 "RING" messages (the 4th
ring) similar to the automatic answer method. The modem then makes a connection and sends a "CONNECT
..." message to getty which then sends a login prompt to the caller. It's not all quite this simple as are some
special tricks used to allow dial−out when waiting for a call. See Dialing Out while Waiting for an Incoming
Call

The automatic answer case uses the CD (Carrier Detect aka DCD) wire from the modem to the serial port to
tell when a connection is made. It works like this. At boot−time getty tries to open the serial port but the
attempt fails since the modem has negated CD (the modem is idle). Then the getty program waits at the
open statement in the program until a CD signal is asserted. When a CD signal arrives (perhaps hours later)
then the port is opened and getty sends the login prompt. While getty is waiting (sleeping) at the open
statement, other processes can run so it doesn't degrade computer performance. What actually wakes getty
up is an interrupt which is issued when the CD line from the modem changes its state to on.

You may wonder how getty is able to open the serial port in the "manual"−answer case since CD may be
negated. Well, there's a way to write a program to force the port to open even if there is no CD signal asserted.

12.3 56k Doesn't Work for Dialin

If you expect that people will be able to dial−in to you at 56k, it can't be done unless you have all the
following:

You have a digital connection to the telephone company such as a trunkside−T1 or ISDN line1.
You use special digital modems (see Digital Modems)2.
You have a "... concentrator", or the like to interface your digital−modems to the digital lines of the
telephone company.

3.

A "... concentrator" may be called a "modem concentrator" or a "remote access concentrator" or it could be
included in a "remote access server" (RAS) which includes the digital modems, etc. This type of setup is used
by ISPs (Internet Service Providers).

12.4 Getty

Introduction to Getty

getty is the program you run for dialin. You don't need it for dialout. In addition to presenting a login
prompt, it also may help answer the telephone. Originally getty was used for logging in to a computer from a
dumb terminal. A major use of it today is for logging in to a Linux console. There are several different getty

 Modem−HOWTO

12.3 56k Doesn't Work for Dialin 52

programs but a few of these work OK with modems for dialin. The getty program is usually started at
boot−time. It must be called from the /etc/inittab file. In this file you may find some examples which you will
likely need to edit a bit. Hopefully these examples will be for the flavor of getty installed on your PC.

There are four different getty programs to choose from that may be used with modems for dial−in: mgetty,
uugetty, getty_em, and agetty. A brief overview is given in the following subsections. agetty is the
weakest of the four and it's mainly for use with directly connected text−terminals. mgetty has support for
fax and voice mail but uugetty doesn't. mgetty allegedly lacks a few of the features of uugetty.
getty_em is a simplified version of uugetty. Thus mgetty is likely your best choice unless you are
already familiar with uugetty (or find it difficult to get mgetty). The syntax for these getty programs
differs, so be sure to check that you are using the correct syntax in /etc/inittab for whichever getty you
use.

In order to see what documentation exists about the various gettys on your computer, use the "locate"
command. Type: locate "*getty*" (including the quotes may help). Note that many distributions just call the
program getty even though it may actually be agetty, uugetty, etc. But if you read the man page (type: man
getty), it might disclose which getty it is. This should be the getty program with path /sbin/getty.

How getty respawns

After you log in you will notice (by using "top", "ps −ax", or "ptree") that the getty process is no longer
running. What happened to it? Why does getty restart again if your shell is killed? Here's why.

After you type in your user name, getty takes it and calls the login program telling it your user name. The
getty process is replaced by the login process. The login process asks for your password, checks it and starts
whatever process is specified in your password file. This process is often the bash shell. If so, bash starts and
replaces the login process. Note that one process replaces another and that the bash shell process originally
started as the getty process. The implications of this will be explained below.

Now in the /etc/inittab file, getty is supposed to respawn (restart) if killed. It says so on the line that calls
getty. But if the bash shell (or the login process) is killed, getty respawns (restarts). Why? Well, both the login
process and bash are replacements for getty and inherit the signal connections establish by their predecessors.
In fact if you observe the details you will notice that the replacement process will have the same process ID as
the original process. Thus bash is sort of getty in disguise with the same process ID number. If bash is killed it
is just like getty was killed (even though getty isn't running anymore). This results in getty respawning.

When one logs out, all the processes on that serial port are killed including the bash shell. This may also
happen (if enabled) if a hangup signal is sent to the serial port by a drop of DCD voltage by the modem.
Either the logout or drop in DCD will result in getty respawning. One may force getty to respawn by manually
killing bash (or login) either by hitting the k key, etc. while in "top" or with the "kill" command. You will
likely need to kill it with signal 9 (which can't be ignored).

About mgetty

mgetty was written as a replacement for uugetty which was in existence long before mgetty. Both are
for use with modems but mgetty is best (unless you already are committed to uugetty). mgetty may be
also used for directly connected terminals. In addition to allowing dialup logins, mgetty also provides FAX
support, auto PPP detection, and caller−id support. It permits dialing out when mgetty is waiting for an
incoming phone call. There is a supplemental program called vgetty which handles voicemail for some
modems. mgetty documentation is fair (except for voice mail), and is not supplemented in this HOWTO. To

 Modem−HOWTO

How getty respawns 53

automatically start PPP one must edit /etc/mgetty/login.conf to use "AutoPPP" (has example). You can find
the latest information on mgetty at http://www.leo.org/~doering/mgetty/ and http://alpha.greenie.net/mgetty/

About uugetty

getty_ps contains two programs: getty is used for console and terminal devices, and uugetty for
modems. Greg Hankins (former author of Serial−HOWTO) used uugetty so his writings about it are
included here. See Uugetty.

About getty_em

This is a simplified version of ``uugetty''. It was written by Vern Hoxie after he became fully confused with
complex support files needed for getty_ps and uugetty.

It is part of the collection of serial port utilities and information by Vern Hoxie available via ftp from
scicom.alphacdc.com/pub/linux. The name of the collection is ``serial_suite.tgz''.

About agetty

This subsection is long since the author tried using agetty for dialin. agetty is seemingly simple since there
are no initialization files. But when I tried it, it opened the serial port even when there was no CD signal
present. It then sent both a login prompt and the /etc/issue file to the modem in the AT−command state before
a connection was made. The modem thinks all this an AT command and if it does contain any "at" strings (by
accident) it is likely to adversely modify your modem profile. Echo wars can start where getty and the modem
send the same string back and forth over and over. You may see a "respawning too rapidly" error message if
this happens. To prevent this you need to disable all echoing and result codes from the modem (E0 and Q1).
Also use the −i option with agetty to prevent any /etc/issue file from being sent.

If you start getty on the modem port and a few seconds later find that you have the login process running on
that port instead of getty, it means that a bogus user name has been sent to agetty from the modem. To keep
this from happening, I had to save my dial−in profile in the modem so that it become effective at power−on.
The other saved profile is for dial−out. Then any dial−out programs which use the modem must use a Z, Z0,
or Z1 in their init string to initialize the modem for dial−out (by loading the saved dial−out profile). If the
1−profile is for dial−in you use Z1 to load it, etc. If you want to listen for dial−in later on, then the modem
needs to be reset to the dial−in profile. Not all dial−out programs can do this reset upon exit from them.

Thus while agetty may work OK if you set up a dial−in profile correctly in the modem hardware, it's probably
best suited for virtual consoles or terminals rather than modems. If agetty is running for dialin, there's no easy
way to dial out. When someone first dials in to agetty, they should hit the return key to get the login prompt.
agetty in the Debian distribution is just named getty.

About mingetty, and fbgetty

mingetty is a small getty that will work only for monitors (the usual console) so you can't use it with
modems for dialin. fbgetty is as above but supports framebuffers.

12.5 Why "Manual" Answer is Best

 Modem−HOWTO

 About uugetty 54

http://www.leo.org/~doering/mgetty/
http://alpha.greenie.net/mgetty/

The difference between the two ways of answering is exhibited when the computer happens to be down but
the modem is still working. For the manual case, the "RING" message is sent to getty but since the computer
is down, getty isn't there and the phone never gets answered. There are no telephone charges when there is no
answer. For the automatic answer case, the modem (which is still on) answers the phone but no login message
is ever sent since the computer is down. The phone bill runs up as the waiting continues. If the phone call is
toll−free, it doesn't make much difference, although it may be frustrating waiting for a login prompt that never
arrives. mgetty uses manual answer. Uugetty can do this too using a configuration script.

12.6 Dialing Out while Waiting for an Incoming Call

Here's what could go wrong with a simple−minded manual−answer situation. Suppose another process dials
out while getty is listening for a "RING" message from its modem on the serial wire. Then incoming bytes for
the dial−out process flow from the modem to the serial port. For example, your modem may send a
"CONNECT" message to your serial port when the dial−out process connects. If getty reads this there's
trouble since reads are destructive reads. Once getty reads it, then the dial−out process that is expecting
"CONNECT" (or something else) can't read it. Thus the dial−out process is likely to fail.

There's a way to avoid this and here's how mgetty does it. When mgetty is listing for an incoming call, it
doesn't read anything from the port until it thinks that the characters are for mgetty. Mgetty monitors the port
and if characters arrive, it doesn't read them right away. Instead, it first checks to see if another process is
using the port. If so, mgetty backs off and closes the port (but the port remains open for the other process).
Thus if another process dials out, mgetty doesn't interfere with it. When the other process finally closes the
port, then mgetty resumes "listening". It's a special type of "listening" that refrains from reading until mgetty
believes that what it will read is for mgetty (hopefully a "RING" message).

When mgetty checks to see if another process is using the port, it actually checks for valid lockfiles on the
port. If the other process failed to use lockfiles, too bad for it. For more details see the mgetty documentation:
"How mgetty works". For programmers only: "listening" is actually using the system calls "poll" or "select" to
monitor the port. They are likely also used to monitor the port when a non−mgetty process is using the port.

With auto−answer, getty is waiting for CD to be asserted so that it can open the port. One may dial out, but
once a connection is made the modem's CD is asserted. If getty were to then read the port it would eat the
characters intended to be read by the dial−out connection. While agetty will have this problem, it's claimed
that uugetty will check lockfiles before reading (similar to mgetty).

12.7 Ending a Dial−in Call

There are two major ways to end a dial−in call. The caller may either logout or just hang up. For the hangup
case see Caller hangs up

Caller logs out

When the call is over the normal way to end the connection is for the user to log out. This will kill the remote
user's shell on your PC. Now since there is nothing running on this port, the port is closed and sends a hangup
signal to the modem by negating DTR. This will only happen if stty −a shows hupcl (hang up on close) but
this should be the default.

The modem getting this hangup (negated DTR signal) will then hang up the phone line (provided the modem
has been configured to do this −−see below). The modem should then be ready to answer any new incoming

 Modem−HOWTO

 12.6 Dialing Out while Waiting for an Incoming Call 55

calls. Killing the user's shell also causes getty to respawn and wait for the next call.

As an alternative to using DTR to tell the modem to hang up the phone line, a script used after getty respawns
may send the unique escape code sequence +++ to the modem to put it into AT command mode. The +++
must have both an initial and final time delay. Once in AT command mode, a hangup command (H0) may be
sent to the modem as well as other AT commands. If the PC fails to successfully signal the modem when a
logout happens (or to use the +++ escape when restarting getty), then the modem is apt to remain in on−line
mode and no more incoming calls can be received.

When DTR drops (is negated)

When DTR (the "hang−up" signal) is negated, what the modem does depends on the value of the &D option
in the modem's profile. If it's &D0 nothing at all happens (the modem ignores the negation of DTR). Here's
what happens when DTR drops:

&D2: The modem will hang up and go into AT command mode (off−line) to wait for the next call. Except
that it will not be able to automatically answer the phone until DTR is asserted again. But since getty
automatically respawns (if so set in /etc/inittab) then getty will immediately restart after a logout and this will
assert DTR. So what happens when someone logs out is that DTR only is negated for a fraction of a second
(winks) before it gets asserted again. For the above to happen, the DTR must be negated for at least the time
specified by register S25.

&D3: In this case the modem does a hard reset: It hangs up and restores the saved profile as specified by &Y.
It should now be in the same state it was in when first powered on and it's ready for incoming calls. The S25
limit may have no effect so even a very short "wink" is detected. Another brand of modem says the S25 limit
is still valid. Thus &D3 is a stronger "reset" than &D2 which doesn't restore the saved profile and could require
a longer wink to work.

If you don't know which of the above two to use try using &D3 first. Under favorable conditions, either one
should work OK. It's reported that for a few modems only &D2 works OK.

Caller hangs up

Instead of logging out the normal way, a caller may just hang up. This results in a lost connection and of
course a loss of carrier. Other problems could also cause a loss of carrier. The "NO CARRIER" result code is
displayed. The modem hangs up and waits for the next call. Except that there is no getty running yet to start
the login process.

Here's how getty gets started again: The loss of carrier should negate the CD signal sent by the modem to the
serial port (provided &C1 has been set). When the PC's serial port gets the negated CD signal it should kill the
shell and then getty should respawn.

This paragraph is about other things that happen but do nothing. Only the curious need read it. When the shell
is killed, a DTR wink is sent to the modem but since the modem is not on−line anymore and has already hung
up, the modem ignores the negation of DTR (hang up). The loss of carrier also negates the DSR signal sent by
the modem to the serial port (provided &S1 or &S2 is set) but this signal is ignored (by Linux).

 Modem−HOWTO

When DTR drops (is negated) 56

12.8 Dial−in Modem Configuration

The getty programs have a provision for sending an init string to the modem to configure it. But you may need
to edit it. Another method is to save a suitable init string inside the modem (see Init Strings: Saving and
Recalling for how to save it in the modem).

The configuration for dial−in depends both on the getty you use and perhaps on your modem. If you can't find
suggested configurations in other documentation here are some hints using Hayes AT commands:

&C1 Make the CD line to the serial port track the actual state of the carrier (CD asserted only when
there's carrier). Getty_em requires &C0 (CD always asserted)

•

&D3 Do a hard reset of the modem when someone logs out (or hangs up). For some modems it's
reported that &D2 is required since they can't tolerate a hard reset ??

•

E0 Don't echo AT commands back to the serial port. This is a must for agetty. Some suggest E1 (echo
AT commands) for mgetty. For dial−out you want E1 so you can see what was sent.

•

&K3 Use hardware flow control•
Q0 Echo results words (such as CONNECT). Most gettys use them. But it's reported an AT&T
version of uugetty and agetty require Q2 (no result words for dial−in).

•

S0=? mgetty suggests S0=0 (manual answer). If you set S0=3 the modem will auto−answer on the
3rd ring, etc. Agetty uses auto−answer. So does uugetty (usually).

•

V1 Display results (such as CONNECT) in words (and not in code)•
X4 Check for dialtone and busy signal•

12.9 Callback

Callback is where someone first dials in to your modem. Then, you get a little info from the caller and then
call it right back. Why would you want to do this? One reason is to save on telephone bills if you can call the
caller cheaper than the caller can call you. Another is to make sure that the caller really is who it claims to be.
If a caller calls you and claims to be calling from its usual phone number, then one way to verify this is to
actually place a new call to that number.

There's a program for Linux called "callback" that works with mgetty. It's at
ftp://ftp.rug.nl/contrib/frank/software/linux/callback/ Step−by−step instructions on how someone installed it
(and PPP) is at http://www.stokely.com/unix.serial.port.resources/callback.html

12.10 Voice Mail

Voice mail is like an answering machine run by a computer. To do this you must have a modem that supports
"voice" and supporting software. Instead of storing the messages on tape, they are stored in digital format on a
hard−drive. When a person phones you, they hear a "greeting" message and can then leave a message for you.
More advanced systems would have caller−selectable mail boxes and caller−selectable messages to listen to.
Free software is available in Linux for simple answering, but doesn't seem to be available yet for the more
advanced stuff.

I know of two different voicemail packages for Linux. One is a very minimal package (see Voicemail
Software). The other, more advanced, but currently poorly documented, is vgetty. It's an optional addition
to the well documented and widely distributed mgetty program. It supports ZyXEL−like voice modem
commands. In the Debian distribution, you must get the mgetty−voice package in addition to the mgetty
package and mgetty−doc package.

 Modem−HOWTO

 12.8 Dial−in Modem Configuration 57

ftp://ftp.rug.nl/contrib/frank/software/linux/callback/
http://www.stokely.com/unix.serial.port.resources/callback.html

12.11 Simple Manual Dial−In

This is really doing it manually! It doesn't even permit the caller to login but the caller may "chat" with you,
etc. It's a way to answer a call without bothering to edit any configuration files for dial−in or enabling getty.
To do it you run a terminal program such as minicom. Make sure it's connected to your modem by typing "AT
<enter>" and expect "OK". Then wait for the call. Then you really answer the call manually by typing "ATA"
when the phone is ringing. This doesn't run getty and the caller can't login. But if the caller is calling in with a
terminal program they may type a message to your screen (and conversely). You both may send files back and
forth by using the commands built into the terminal programs (such as minicom). Another way to answer such
a call would be to type say "ATS0=3" just before the call comes in to enable the modem to auto−answer on
the third ring.

This is one way to crudely transfer files with someone on a MS Windows PC who uses HyperTerminal or
Terminal (for Windows 3.x or DOS). These two MS programs are something like minicom. Using this simple
manual method (for Linux−to−Linux or MS−to−Linux) requires two people to be present, one one each end
of the phone line connection running a terminal communications program. Be warned that if both people type
at the same time it's chaos. It's a "last resort" way to transfer files between any two people that have PCs
(either Linux or MS Windows). It could also be used for testing your modem or as a preliminary test before
setting up dial−in.

12.12 Complex GUI Dial−In, VNC

At the opposite extreme to the simple (but labor intensive) manual dial−in described above, is one that results
in GUI graphical interface to the Linux PC. This generally requires that a network running TCP/IP protocol
exist between the two computers. One way to get such a "network" is to dial−out to a PC set for dial−in and
then run PPP on the phone line. PPP will use TCP/IP protocol encapsulated inside the PPP packets. Both sides
must run PPP and mgetty can be configured to start PPP as soon as the caller does. The caller may use a
PPP−dialer program just like they were dialing an ISP. Programs such as wvdial, eznet, or chat scripts should
do it.

Instead of this tiny network over a phone connection a much larger network (the entire world) is reached via
an ISP. For their lowest−rate service many of them use proxy servers that will not give you access to the ports
you need to use. Even if they don't use proxy servers, the IP address they give you is only temporary for the
session, so you'll need to email this IP to whomever wants to reach you. If you get a more expensive ISP
service, then you can avoid these problems.

One way to get a GUI interface from the remote PC is to run the GPLed program: Virtual Network Computer
(VNC) from AT&T. It has a server part which you run on your Linux PC for dial−in and a viewer (client) part
used for dial−out. Neither of these actually does any dialing or login but assumes that you have a network
already set up. The VNC server has an X−server built in and may use Linux's twm window manager. See the
article on VNC in Linux Magazine: http://www.linux−mag.com/2000−11/desktop_03.html. The AT&T site
for VNC is: http://www.uk.research.att.com/vnc/.

With VNC one can also connect to remote Windows PCs, get the Windows GUI on a Linux PC, and run
Windows programs on the remote Windows PC. Of course the Windows PC must be running VNC (as a
server). Obviously, a GUI connection over a modem will be slower than a text−only connection especially if
you run KDE or GNOME or want 16−bit color.

 Modem−HOWTO

 12.11 Simple Manual Dial−In 58

http://www.linux-mag.com/2000-11/desktop_03.html
http://www.uk.research.att.com/vnc/

12.13 Interoperability with MS Windows

Once you have dial−in set up, others may call in to you using minicom (or the like) from Unix−like systems.
From MS Windows one may call you using "HyperTerminal (or just "Terminal" in Windows 3.1 or DOS).

If in Windows one wants to use dial−up with a network protocol over the phone line it's called "Dial−up
Networking". But it probably will not be able to communicate with Linux. For setting up such dial−in in
Windows one clicks on "server" while dial−out is the "client. Such dial−in is often called "remote control"
meaning that the caller can use your PC, run programs on it, and thus control it remotely.

While it's easy to call in to a text−based Linux system from MS Windows, it's not so easy the other way
around (partly because Windows is not text−based and would need to put the caller into DOS where files
wouldn't be protected like they are in Linux.

However Windows "Dial−up Networking" can establish a dial−in provided the caller uses certain network
protocols over the phone line: MS's or Novel's (two protocols not liked by Linux). So if someone with
Windows enables their Dial−up networking server in Windows 98, you can't just dial in directly to it from
Linux. This type of dial−in doesn't permit the caller to run most of the programs on the host like Linux does.
It's called "remote access" and one may transfer files, use the hosts printer, access databases, etc. Is there some
way to interface to Dial−up Networking from Linux??

It is possible for two people to crudely chat and send files using Minicom on the Linux end and
HyperTerminal on the Windows end. It's all done manually by two live persons, one on each end of the phone
connection. See Simple Manual Dial−In.

At the opposite extreme, one would like to run a dial−in so that the person calling would get a GUI interface.
For that a network protocol is normally used. It's possible using PC Anywhere for Windows or VNC for both
Linux and Windows. But PC Anywhere doesn't seem to talk to Linux ?? Other Window programs for "remote
control" include Laplink, Co−Session, and Microcom. Do any such programs support Linux besides VNC ??

13. Uugetty for Dial−In (from the old Serial−HOWTO)

Be aware that you could use mgetty as a (better?) alternative to uugetty. mgetty is newer and more
popular than uugetty. See Getty for a brief comparison of these 2 gettys.

13.1 Installing getty_ps

Since uugetty is part of getty_ps you'll first have to install getty_ps. If you don't have it, get the latest version
from metalab.unc.edu:/pub/Linux/system/serial. In particular, if you want to use high speeds
(57600 and 115200 bps), you must get version 2.0.7j or later. You must also have libc 5.x or greater.

By default, getty_ps will be configured to be Linux FSSTND (File System Standard) compliant, which
means that the binaries will be in /sbin, and the config files will be named
/etc/conf.{uu}getty.ttySN. This is not apparent from the documentation! It will also expect lock
files to go in /var/lock. Make sure you have the /var/lock directory.

If you don't want FSSTND compliance, binaries will go in /etc, config files will go in
/etc/default/{uu}getty.ttySN, and lock files will go in /usr/spool/uucp. I recommend
doing things this way if you are using UUCP, because UUCP will have problems if you move the lock files to

 Modem−HOWTO

12.13 Interoperability with MS Windows 59

ftp://metalab.unc.edu:/pub/Linux/system/serial

where it isn't looking for them.

getty_ps can also use syslogd to log messages. See the man pages for syslogd(1) and
syslog.conf(5) for setting up syslogd, if you don't have it running already. Messages are logged with
priority LOG_AUTH, errors use LOG_ERR, and debugging uses LOG_DEBUG. If you don't want to use
syslogd you can edit tune.h in the getty_ps source files to use a log file for messages instead, namely
/var/adm/getty.log by default.

Decide on if you want FSSTND compliance and syslog capability. You can also choose a combination of the
two. Edit the Makefile, tune.h and config.h to reflect your decisions. Then compile and install
according to the instructions included with the package.

13.2 Setting up uugetty

With uugetty you may dial out with your modem while uugetty is watching the port for logins.
uugetty does important lock file checking. Update /etc/gettydefs to include an entry for your
modem. For help with the meaning of the entries that you put into /etc/gettydefs, see the "serial_suite"
collected by Vern Hoxie. How to get it is in section See About getty_em. When you are done editing
/etc/gettydefs, you can verify that the syntax is correct by doing:

linux# getty −c /etc/gettydefs

Modern Modems

If you have a 9600 bps or faster modem with data compression, you can lock your serial port to one speed.
For example:

115200 fixed speed
F115200# B115200 CS8 # B115200 SANE −ISTRIP HUPCL #@S @L @B login: #F115200

If you have your modem set up to do RTS/CTS hardware flow control, you can add CRTSCTS to the entries:

115200 fixed speed with hardware flow control
F115200# B115200 CS8 CRTSCTS # B115200 SANE −ISTRIP HUPCL CRTSCTS #@S @L @B login: #F115200

Old slow modems

If you have a slow modem (under 9600 bps) Then, instead of one line for a single speed, your need several
lines to try a number of speeds. Note that these lines are linked to each other by the last "word" in the line
such as #4800. Blank lines are needed between each entry. Are the higher modem−to−serial_port speeds in
this example really needed for a slow modem ?? The uugetty documentation shows them so I'm not yet
deleting them.

Modem entries
115200# B115200 CS8 # B115200 SANE −ISTRIP HUPCL #@S @L @B login: #57600

57600# B57600 CS8 # B57600 SANE −ISTRIP HUPCL #@S @L @B login: #38400

38400# B38400 CS8 # B38400 SANE −ISTRIP HUPCL #@S @L @B login: #19200

19200# B19200 CS8 # B19200 SANE −ISTRIP HUPCL #@S @L @B login: #9600

 Modem−HOWTO

13.2 Setting up uugetty 60

9600# B9600 CS8 # B9600 SANE −ISTRIP HUPCL #@S @L @B login: #4800

4800# B4800 CS8 # B4800 SANE −ISTRIP HUPCL #@S @L @B login: #2400

2400# B2400 CS8 # B2400 SANE −ISTRIP HUPCL #@S @L @B login: #1200

1200# B1200 CS8 # B1200 SANE −ISTRIP HUPCL #@S @L @B login: #115200

Login Banner

If you want, you can make uugetty print interesting things in the login banner. In Greg's examples, he has
the system name, the serial line, and the current bps rate. You can add other things:

 @B The current (evaluated at the time the @B is seen) bps rate.
 @D The current date, in MM/DD/YY.
 @L The serial line to which uugetty is attached.
 @S The system name.
 @T The current time, in HH:MM:SS (24−hour).
 @U The number of currently signed−on users. This is a
 count of the number of entries in the /etc/utmp file
 that have a non−null ut_name field.
 @V The value of VERSION, as given in the defaults file.
 To display a single '@' character, use either '\@' or '@@'.

13.3 Customizing uugetty

There are lots of parameters you can tweak for each port you have. These are implemented in separate config
files for each port. The file /etc/conf.uugetty will be used by all instances of uugetty, and
/etc/conf.uugetty.ttySN will only be used by that one port. Sample default config files can be found
with the getty_ps source files, which come with most Linux distributions. Due to space concerns, they are
not listed here. Note that if you are using older versions of uugetty (older than 2.0.7e), or aren't using
FSSTND, then the default file will be /etc/default/uugetty.ttySN. Greg's
/etc/conf.uugetty.ttyS3 looked like this:

sample uugetty configuration file for a Hayes compatible modem to allow
incoming modem connections
#
line to initialize
INITLINE=ttyS3
timeout to disconnect if idle...
TIMEOUT=60
modem initialization string...
format: <expect> <send> ... (chat sequence)
INIT="" AT\r OK\r\n
WAITFOR=RING
CONNECT="" ATA\r CONNECT\s\A
this line sets the time to delay before sending the login banner
DELAY=1
#DEBUG=010

Add the following line to your /etc/inittab, so that uugetty is run on your serial port, substituting in
the correct information for your environment − run−levels (2345 or 345, etc.) config file location, port, speed,
and default terminal type:

S3:2345:respawn:/sbin/uugetty −d /etc/default/uugetty.ttyS3 ttyS3 F115200 vt100

 Modem−HOWTO

Login Banner 61

Restart init:

linux# init q

For the speed parameter in your /etc/inittab, you want to use the highest bps rate that your modem
supports.

Now Linux will be watching your serial port for connections. Dial in from another machine and login to you
Linux system.

uugetty has a lot more options, see the man page for uugetty) (often just called getty) for a full
description. Among other things there is a scheduling feature, and a ringback feature.

14. What Speed Should I Use with My Modem?

By "speed" we really mean the "data flow rate" but almost everybody incorrectly calls it speed. For all modern
modems you have no choice of the speed that the modem uses on the telephone line since it will automatically
choose the highest possible speed that is feasible under the circumstances. If one modem is slower than the
other, then the faster modem will operate at the slower modem's speed. On a noisy line, the speed will drop
still lower.

While the above speeds are selected automatically by the modems you do have a choice as to what speed will
be used between your modem and your computer (PC−to−modem speed). This is sometimes called "DTE
speed" where "DTE" stands for Data Terminal Equipment (Your computer is a DTE.) You need to set this
speed high enough so this part of the signal path will not be a bottleneck. The setting for the DTE speed is the
maximum speed of this link. Most of the time it will likely actually operate at lower speeds.

For an external modem, DTE speed is the speed (in bits/sec) of the flow over the cable between you modem
and PC. For an internal modem, it's the same idea since the modem also emulates a serial port. It may seem
ridiculous having a speed limit on communication between a computer and a modem card that is directly
connected inside the computer to a much higher speed bus. But it's usually that way since the modem card
probably includes a dedicated serial port which does have speed limits (and settable speeds). However, some
software modems have no such speed limits.

14.1 Speed and Data Compression

What speed do you choose? If it were not for "data compression" one might try to choose a DTE speed
exactly the same as the modem speed. Data compression takes the bytes sent to the modem from your
computer and encodes them into a fewer number of bytes. For example, if the flow (speed) from the PC to the
modem was 20,000 bytes/sec (bps) and the compression ratio was 2 to 1, then only 10,000 bytes/sec would
flow over the telephone line. Thus for a 2:1 compression ratio you would need to set the DTE speed to double
the maximum modem speed on the phone line. If the compression ratio were 3 to 1 you would need to set it 3
times faster, etc.

14.2 Where do I Set Speed ?

This DTE (PC−to−modem) speed is normally set by a menu in your communications program or by an option
given to the getty command if someone is dialing in. You can't set the DCE modem−to−modem speed since
this is set automatically by the modem to the highest feasible speed after negotiation with the other modem.

 Modem−HOWTO

 14. What Speed Should I Use with My Modem? 62

Well, actually you can set the modem−to−modem speed with the S37 register but you shouldn't do it. If the
two modems on a connection were to be set this way to different speeds, then they couldn't communicate with
each other.

14.3 Can't Set a High Enough Speed

Speeds over 115.2k

The top speed of 115.2k has been standard since the mid 1990's. But by the year 2000, most new serial ports
supported higher speeds of 230.4k and 460.8k. Some also support 921.6k. Unfortunately Linux seldom uses
these speeds due to lack of drivers. Thus such ports behave just like 115.2k ports unless the higher speeds are
enabled by special software. To get these speeds you need to compile the kernel with special patches until
support is built into the kernel's serial driver.

Unfortunately serial port manufacturers never got together on a standard way to support high speeds, so the
serial driver needs to support a variety of hardware. Once high speed is enabled, a standard way to choose it is
to set baud_base to the highest speed with setserial (unless the serial driver does this for you). The software
will then use a divisor of 1 to set the highest speed. All this will hopefully be supported by the Linux kernel
sometime in 2002.

A non−standard way that some manufacturers have implemented high speed is to use a very large number for
the divisor to get the high speed. This number isn't really a divisor at all since it doesn't divide anything. It's
just serves as a code number to tell the hardware what speed to use. In such cases you need to compile the
kernel with special patches.

One patch to support this second type of high−speed hardware is called shsmod (Super High Speed Mode).
There are both Windows and Linux versions of this patch. See http://www.devdrv.com/shsmod/. There is also
a module for the VIA VT82C686 chip http://www.kati.fi/viahss/. Using it may result in buffer overflow.

For internal modems, only a minority of them advertise that they support speeds of over 115.2k for their
built−in serial ports. Does shsmod support these ??

How speed is set in hardware: the divisor and baud_base

Speed is set by having the serial port's clock change frequency. But this change happens not by actually
changing the frequency of the oscillator driving the clock but by "dividing" the clock's frequency. For
example, to divide by two, just ignore every other clock tick. This cuts the speed in half. Dividing by 3 makes
the clock run at 1/3 frequency, etc. So to slow the clock down (meaning set speed), we just send the clock a
divisor. It's sent by the serial driver to a register in the port. Thus speed is set by a divisor.

If the clock runs at a top speed of 115,000 bps (common), then here are the divisors for various speeds
(assuming a maximum speed of 115,200): 1 (115.2k), 2 (57.6k), 3 (38.4k), 6 (19.2k), 12 (9.6k), 24 (4.8k), 48
(2.4k), 96 (1.2k), etc. The serial driver sets the speed in the hardware by sending the hardware only a "divisor"
(a positive integer). This "divisor" divides the "maximum speed" of the hardware resulting in a slower speed
(except a divisor of 1 obviously tells the hardware to run at maximum speed).

There are exceptions to the above since for certain serial port hardware, speeds above 115.2k are set by using
a very high divisor. Keep that exception in mind as you read the rest of this section. Normally, if you specify a
speed of 115.2k (in your communication program or by stty) then the serial driver sets the port hardware to
divisor 1 which sets the highest speed.

 Modem−HOWTO

 14.3 Can't Set a High Enough Speed 63

http://www.devdrv.com/shsmod/
http://www.kati.fi/viahss/

Besides using a very high divisor to set high speed the conventional way to do it is as follows: If you happen
to have hardware with a maximum speed of say 230.4k (and the 230.4k speed has been enabled), then
specifying 115.2k will result in divisor 1. For some hardware this will actually give you 230.4k. This is
double the speed that you set. In fact, for any speed you set, the actual speed will be double. If you had
hardware that could run at 460.8k then the actual speed would be quadruple what you set. All the above
assumes that you don't use "setserial" to modify things.

Setting the divisor, speed accounting

To correct this accounting (but not always fix the problem) you may use "setserial" to change the baud_base
to the actual maximal speed of your port such as 230.4k. Then if you set the speed (by your application or by
stty) to 230.4k, a divisor of 1 will be used and you'll get the same speed as you set.

If you have old software which will not permit such a high speed (but your hardware has it enabled) then you
might want to look into using the "spd_cust" parameter for setserial with "divisor 1". Then when you tell the
application that the speed it 38,400, it will use divisor 1 and get the highest speed.

There are some brands of UARTs that uses a very high divisor to set high speeds. There isn't any satisfactory
way to use "setserial" (say set "divisor 32770") to get such a speed since then setserial would then think that
the speed is very low and disable the FIFO in the UART.

Crystal frequency is higher than baud_base

Note that the baud_base setting is usually much lower than the frequency of the crystal oscillator since the
crystal frequency of say 1.8432 MHz is divided by 16 in the hardware to get the actual top speed of 115.2k.
The reason the crystal frequency needs to be higher is so that this high crystal speed can generate clock ticks
to take a number of samples of each bit to determine if it's a 1 or a 0.

Actually, the 1.8432 MHz "crystal frequency" is obtained from a 18.432 MHz crystal oscillator by dividing by
10 before being fed to the UART. Other schemes are also possible as long as the UART performs properly.

14.4 Speed Table

It's best to have at least a 16650 UART for a 56k modem but few modems or serial ports provide it. Second
best is a 16550 that has been tweaked to give 230,400 bps (230.4 kbps). Most people still use a 16550 that is
only 115.2 kbps but it's claimed to only slow down thruput by a few percent (on average). This is because a
typical compression ratio is 2 to 1 and for downloading compressed files (packages) it's 1 to 1. There's no
degradation for these cases. Here are some suggested speeds to set your serial line if your modem speed is:

56k (V.92): use 115.2 kbps or 230.4 kbps (best)•
56k (V.90): use 115.2 kbps or 230.4 kbps (best)•
33.6k (V.34bis): use 115.2 kbps•
28.8k (V.34): use 115.2 kbps•
14.4k (V.32bis): use 57600 bps•
9.6k (V.32): use 38400 bps•
slower than a 9600 bps (V.32) modem: Set the speed to the same speed as the modem (unless you
have data compression).

•

All the above speeds may use V.42bis data compression and V.42 error correction. If data compression is not
used then the speed may be set lower so long as it's above the modem speed.

 Modem−HOWTO

Setting the divisor, speed accounting 64

15. Communications Programs And Utilities

While PPP is used for Internet access you also need a dialer program (or script) that will work with PPP. Such
a dialer program will dial a phone number. When the other side answers the phone then three things happen: a
modem connection is established (CONNECT), PPP is started at both ends, and you get logged in
automatically. The exact sequence of the last 2 events may vary. Dialer programs for ppp include wvdial, chap
scripts, kppp, RP3, Linuxconf, and gnome−ppp.

There are also other dialer programs which can dial out directly (thru a modem) to local libraries, etc. This
isn't the Internet. minicom is the most popular followed by Seyon (X−Windows only) and Kermit. People
have likely also used these programs for dialing out with ppp for the Internet but it's not what they were
originally designed for.

15.1 Minicom vs. Kermit

Minicom is only a communications program while Kermit is both a communications program and a file
transfer protocol. But one may use the Kermit protocol from within Minicom (provided one has Kermit
installed on one's PC). Minicom is menu based while Kermit is command line based (interactive at the special
Kermit prompt). While the Kermit program is free software, the documentation is not all free. There is no
detailed manual supplied and it is suggested that you purchase a book as the manual. However Kermit has
interactive online help which tells all but lacks tutorial explanations for the beginner. Commands may be put
in a script file so you don't have to type them over again each time. Kermit (as a communications program) is
more powerful than Minicom.

Although all Minicom documentation is free, it's not as extensive as Kermit's. Since permission is required to
include Kermit in a commercial distribution, and since the documentation is not entirely free, some
distributions don't include Kermit. In my opinion it's easier to set up Minicom, there is less to learn, and you
can still use kermit from within Minicom.

15.2 List of Communication Software

Here is a list of some communication software you can choose from, If they didn't come with your distribution
they should be available via FTP. I would like comparative comments on the dialout programs. Are the least
popular ones obsolete?

Least Popular Dialout

ecu − a communications program•
pcomm − procomm−like communications program with zmodem•
xc − xcomm communication package•

Most Popular Dialout

PPP dialers for getting on the internet: wvdial, eznet, chat, pon (uses chat),•
minicom − telix−like communications program. Can work with scripts, zmodem, kermit•
C−Kermit − portable, scriptable, serial and TCP/IP communications including file transfer,
character−set translation, and zmodem support

•

 Modem−HOWTO

 15. Communications Programs And Utilities 65

http://www.columbia.edu/kermit/

seyon − X based communication program•

Fax

By using a fax program, you may use most modems to send faxes. In this case you dial out directly and not
via ppp and an ISP. You also pay any long−distance telephone charges. email is more efficient.

efax is a small fax program•
hylafax is a large fax program based on the client−server model.•
mgetty+fax handles fax stuff and login for dial−ins•
A fax protocol tutorial http://www.iec.org/online/tutorials/vfoip/topic08.html•

Voicemail Software

vgetty is an extension to mgetty that handles voicemail for some modems. It should come with recent
releases of mgetty.

•

VOCPis a "complete voice messaging" system for Linux.•

Dial−in (uses getty)

mgetty+fax is for modems and is well documented (except for voicemail as of early 1999). It also
handles fax stuff and provides an alternative to uugetty. It's incorporating voicemail (using vgetty)
features. See About mgetty

•

uugetty is also for modems. It comes as a part of the ps_getty package. See About getty_ps•

Other

callback is where you dial out to a remote modem and then that modem hangs up and calls you
back (to save on phone bills).

•

SLiRP and term provide a PPP−like service that you can run in user space on a remote computer
with a shell account. See term and SLiRP for more details

•

ZyXEL is a control program for ZyXEL U−1496 modems. It handles dialin, dialout, dial back
security, FAXing, and voice mailbox functions.

•

SLIP and PPP software can be found at
ftp://metalab.unc.edu/pub/Linux/system/network/serial/.

•

Other things can be found on ftp://metalab.unc.edu/pub/Linux/system/serial and
ftp://metalab.unc.edu/pub/Linux/apps/serialcomm or one of the many mirrors.
These are the directories where serial programs are kept.

•

15.3 SLiRP and term

SLiRP and term are programs which are of use if you only have a dial−up shell account on a Unix−like
machine and want to get the equivalent of a PPP account (or the like) without being authorized to have it
(possibly because you don't want to pay extra for it, etc.). SLiRP is more popular than term which is almost
obsolete.

To use SLiRP you install it in your shell account on the remote computer. Then you dial up the account and
run SLiRP on the remote and PPP on your local PC. You now have a PPP connection over which you may run
a web browser on your local PC such as Netscape, etc. There may be some problems as SLiRP is not as good

 Modem−HOWTO

 Fax 66

http://www.iec.org/online/tutorials/vfoip/topic08.html
http://vocp.sourceforge.net/
ftp://metalab.unc.edu/pub/Linux/system/network/serial/
ftp://metalab.unc.edu/pub/Linux/system/serial
ftp://metalab.unc.edu/pub/Linux/apps/serialcomm

as a real PPP account. Some accounts may provide SLiRP since it saves on IP addresses (You have no IP
address while using SLiRP).

term is something like SLiRP only you need to run term on both the local and remote computer. There is no
PPP on the phone line since term uses its own protocol. To use term from your PC you need to use a
term−aware version of ftp to do ftp, etc. Thus it's easier to use SLiRP since the ordinary version of ftp works
fine with SLiRP. There is an unmaintained Term HOWTO.

15.4 MS Windows

If you want someone who uses MS Windows to dial in to your Linux PC then if they use:

Windows 3.x: use Terminal•
Windows 95/98/2000: use HyperTerminal•

Third party dial−out programs include HyperTerminal Private Edition.

16. Two Modems (Modem Doubling)

16.1 Introduction

By using two modems at the same time, the flow of data can be doubled. It takes two modems and two phone
lines. There are two methods of doing this. One is "modem bonding" where software at both ends of the
modem−to−modem connection enables the paired modems to work like a single channel.

The second method is called "modem teaming. Only one end of the connection uses software to make 2
different connections to the internet. Then when a file is to be downloaded, one modem gets the first half of
the file. The second modems simultaneously gets the last half of the same file by pretending that it's resuming
a download that was interrupted in the middle of the file. Is there any modem teaming support in Linux ??

16.2 Modem Bonding

There are two ways to do this in Linux: EQL and multilink. These are provided as part of the Linux kernel
(provided they've been selected when the kernel was compiled). For multilink the kernel must be at least
v.2.4. Both ends of the connection must run them. Few (if any) ISPs provide EQL but many provide
Multilink.

The way it works is something like multiplexing only it's the other way around. Thus it's called
inverse−multiplexing. For the multilink case, suppose you're sending some packets. The first packet goes out
on modem1 while the second packet is going out on modem2. Then the third packet follows the first packet
on modem1. The forth packet goes on modem2, etc. To keep each modem busy, it may be necessary to send
out more packets on one modem than the other. Since EQL is not packet based, it doesn't split up the flow on
packet boundaries.

EQL

EQL is "serial line load balancing" which has been available for Linux since at least 1995. An old (1995)
howto on it is in the kernel documentation (in the networking subdirectory). Unfortunately, ISPs don't seem to

 Modem−HOWTO

15.4 MS Windows 67

provide EQL.

Multilink

Staring with kernel 2.4 in 2000, experimental support is provided for multilink. It must be selected when
compiling the kernel and it only works with PPP.

17. Troubleshooting

17.1 My Modem is Physically There but Can't be Found

An error messages could be something like "No modem detected", "Modem not responding". There could be
no error message. If you have installed an internal modem (serial port is builtin) or are using an external one
and don't know what serial port it's connected to then the problem is to find the serial port. See My Serial Port
is Physically There but Can't be Found. This section is about finding out which serial port has the modem on
it.

There's a program that looks for modems on commonly used serial ports called "wvdialconf". Just type
"wvdialconf <a−new−file−name>". It will create the new file as a configuration file but you don't need this
file unless you are going to use "wvdial" for dialing. See What is wvdialconf ? Unfortunately, if your modem
is in "online data" mode, wvdialconf will report "No modem detected" See No response to AT

Your problem could be due to a winmodem (or the like) which usually can't be used with Linux. See
Software−based Modems (winmodems). The "setserial program may be used to detect serial ports but will not
detect modems on them. Thus "wvdialconf" is best to try first.

Another way try to find out if there's a modem on a port is to start "minicom" on the port (after first setting up
minicom for the correct serial port −−you will need to save the setup and then exit minicom and start it again).
Then type "AT" and you should see "OK" (or 0 if it's set for "digit result codes"). If you don't immediately see
"OK" then if:

No response. See No response to AT•
It takes many seconds to get an expected truncated response (including only the cursor moving down
one line). See Extremely Slow: Text appears on the screen slowly after long delays

•

Some strange characters appear but they are not in response to AT. This likely means that your
modem is still connected to something at the other end of the phone line which is sending some
cryptic packets or the like.

•

No response to AT

The modem should send you "OK" in response to your "AT" which you type to the modem (using minicom or
the like). If you don't see "OK" (and in most cases don't even see the "AT" you typed either) then the modem
is not responding (often because what you type doesn't even get to the modem).

A common cause is that there is no modem on the serial port you are typing to. For the case of an internal
modem, that serial port likely doesn't exist either. That's because the PnP modem card (which has a built−in
serial port) has either not been configured (by isapnp or the like) or has been configured incorrectly. See My
Serial Port is Physically There but Can't be Found.

 Modem−HOWTO

Multilink 68

If what you type is really getting thru to a modem, then the lack of response could be due to the modem being
in "online data" mode where it can't accept any AT commands. You may have been using the modem and then
abruptly disconnected (such as killing the process with signal 9). In that case your modem did not get reset to
"command mode" where it can interact to AT commands. "Minicom" may display "You are already online.
Hangup first." (For another meaning of this minicom message see You are already online! Hang up first.)
Well, you are sort of online but you are may not be connected to anything over the phone line. Wvdial will
report "modem not responding" for the same situation.

To fix this as a last resort you could reboot the computer. Another way to try to fix this is to send +++ to the
modem to tell it to escape back to "command mode" from "online data mode". On both sides of the +++
sequence there must be about 1 second of delay (nothing sent during "guard time"). This may not work if
another process is using the modem since the +++ sequence could wind up with other characters inserted in
between them or after the +++ (during the guard time). Ironically, even if the modem line is idle, typing an
unexpected +++ is likely to set off an exchange of control packets (that you never see) that will violate the
required guard time so that the +++ doesn't do what you wanted. +++ is usually in the string that is named
"hangup string" so if you command minicom (or the like) to hangup it might work. Another way to do this is
to just exit minicom and then run minicom again.

17.2 "Modem is busy"

What this means depends on what program sent it. The modem could actually be in use (busy). Another cause
reported for the SuSE distribution is that there may be two serial drivers present instead of one. One driver
was built into the kernel and the second was a module.

In kppp, this message is sent when an attempt to get/set the serial port "stty" parameters fails. (It's similar to
the "Input/output error" one may get when trying to use "stty −F /dev/ttySx"). To get a few of these stty
parameters, the true address of the port must be known to the driver. So the driver may have the wrong
address. The setserial" command will display what the driver thinks but it's likely wrong in this case. So what
the "modem busy" often means is that the serial port (and thus the modem) can't be found.

If you have a pci modem, then use one of these commands: lspci, or cat /proc/pci, or dmesg to find the correct
address and irq of the modem's serial port. Then check to see if "setserial" shows the same thing. If not, you
need to run a script at boot−time which contains a setserial command that will tell the driver the correct
address and irq. The reason that the driver has it wrong may be due to failure of the kernel to understand the
lspci data correctly. You might notice this in a boot−time message.

17.3 "You are already online! Hang up first." (from
minicom)

The modem has its CD signal on. Either you are actually online (a remote modem is sending you a carrier) or
your modem has been setup to always send the CD signal. In minicom, type at&v to see if &C or &C0 is set.
If so, CD will be on even if you are offline and you'll erroneously get this error message. The fix is to set &C1
in the init string or save it in the modem.

17.4 I can't get near 56k on my 56k modem

There must be very low noise on the line for it to work at even close to 56k. Some phone lines are so bad that
the speeds obtainable are much slower than 56k (like 28.8k or even slower). Sometimes extension phones
connected to the same line can cause problems. To test this you might connect your modem directly at the

 Modem−HOWTO

17.2 "Modem is busy" 69

point where the telephone line enters the building with the feeds for everything else on that line disconnected
(if others can tolerate such a test).

17.5 Uploading (downloading) files is broken/slow

Flow control (both at your PC and/or modem−to−modem) may not be enabled. For the uploading case: If you
have set a high DTE speed (like 115.2k) then flow from your modem to your PC may work OK but uploading
flow in the other direction will not all get thru due to the telephone line bottleneck. This will result in many
errors and the resending of packets. It may thus take far too long to send a file. In some cases, files don't make
it thru at all.

For the downloading case: If you're downloading long uncompressed files or web pages (and your modem
uses data compression) or if you've set a low DTE speed, then downloading may also be broken due to no
flow control.

17.6 For Dial−in I Keep Getting "line NNN of inittab invalid"

Make sure you are using the correct syntax for your version of init. The different init's that are out there
use different syntax in the /etc/inittab file. Make sure you are using the correct syntax for your version
of getty.

17.7 I Keep Getting: ``Id "S3" respawning too fast: disabled
for 5 minutes''

Id "S3" is just an example. In this case look on the line which starts with "S3" in /etc/inittab and calls
getty. This line causes the problem. Make sure the syntax for this line is correct and that the device (ttyS3)
exists and can be found. If the modem has negated CD and getty opens the port, you'll get this error message
since negated CD will kill getty. Then getty will respawn only to be killed again, etc. Thus it respawns over
and over (too fast). It seems that if the cable to the modem is disconnected or you have the wrong serial port,
it's just like CD is negated. All this can occur when your modem is chatting with getty. Make sure your
modem is configured correctly. Look at AT commands E and Q.

If you use uugetty, verify that your /etc/gettydefs syntax is correct by doing the following:

linux# getty −c /etc/gettydefs

This can also happen when the uugetty initialization is failing. See section uugetty Still Doesn't Work.

17.8 My Modem is Hosed after Someone Hangs Up, or
uugetty doesn't respawn

This can happen when your modem doesn't reset when DTR is dropped. Greg Hankins saw his RD and SD
LEDs go crazy when this happened. You need to have your modem reset. Most Hayes compatible modems do
this with &D3, but for USR Courier, SupraFax, and other modems, you must set &D2 (and S13=1 for USR
Courier). Check your modem manual (if you have one).

 Modem−HOWTO

17.5 Uploading (downloading) files is broken/slow 70

17.9 NO DIALTONE

It means exactly what it says. Someone else may be using another telephone on the same line. You also get
this error if there is no phone line plugged into the modem, or if the phone line is somehow broken. Try
plugging a real telephone into the phone cord used by the modem. Check it for a dialtone.

If for some reason your modem doesn't detect a dialtone, then you can force it to dial anyway by putting X3 in
the init string.

17.10 NO CARRIER

This means that the analog sine wave (the carrier) from the other modem isn't present like it should be. If you
were already connected, this means that the connection has been lost. There may have been noise on the line
or a bad connection. The other modem may have hung up on you for some reason: Perhaps the automatic
login process didn't work out OK. Perhaps PPP didn't get started OK. Perhaps a time limit was exceeded.

If you get this error before you get connected, it means that the carrier of the other modem wasn't detected by
your modem. This may happen if there is there is no properly working modem on the other end. For example,
an answering machine could have picked up your call instead of a modem. NO CARRIER will also happen if
the modems fail to negotiate a protocol to use. This can happen if you have an early V.90 modem that first
tries to negotiate a high speed X2 or K56flex protocol. These two protocols are obsolete and some ISP servers
will drop the connection (hang up) when this happens since they have no understanding of such protocols and
don't wait around long enough for the calling modem to fallback to V.90.

If you force your modem to drop the connection by dropping the DTR signal or sending your modem the
hangup signal (ATH) you may get this error message. But in this case you (or your software) wanted to drop
the connection so there should be no problem. In this case you are only supposed to get NO CARRIER if data
was lost. So for most cases of dropping a connection by hangup (or by dropping DTR) you only get an OK
message. Your modem dialer program may not even display that to you.

17.11 uugetty Still Doesn't Work

There is a DEBUG option that comes with getty_ps. Edit your config file
/etc/conf.{uu}getty.ttySN and add DEBUG=NNN. Where NNN is one of the following
combination of numbers according to what you are trying to debug:

D_OPT 001 option settings
D_DEF 002 defaults file processing
D_UTMP 004 utmp/wtmp processing
D_INIT 010 line initialization (INIT)
D_GTAB 020 gettytab file processing
D_RUN 040 other runtime diagnostics
D_RB 100 ringback debugging
D_LOCK 200 uugetty lockfile processing
D_SCH 400 schedule processing
D_ALL 777 everything

Setting DEBUG=010 is a good place to start.

If you are running syslogd, debugging info will appear in your log files. If you aren't running syslogd
info will appear in /tmp/getty:ttySN for debugging getty and /tmp/uugetty:ttySN for

 Modem−HOWTO

17.9 NO DIALTONE 71

uugetty, and in /var/adm/getty.log. Look at the debugging info and see what is going on. Most
likely, you will need to tune some of the parameters in your config file, and reconfigure your modem.

You could also try mgetty. Some people have better luck with it.

17.12 (The following subsections are in both the Serial and
Modem HOWTOs)

17.13 My Serial Port is Physically There but Can't be Found

If a physical device (such as a modem) doesn't work at all it's often because it's disabled and has no address
(PnP hasn't enabled it) or that it is enabled but is not at the I/O address that setserial thinks it's at. Thus it can't
be found.

First check BIOS messages at boot−time (and possible the BIOS menu for the serial port). For the PCI bus use
lspci or scanpci. If it's an ISA bus PnP serial port, try "pnpdump −−dumpregs" and/or see
Plug−and−Play−HOWTO. If the port happens to be enabled then the following two paragraphs may help find
it:

For a non−PnP ISA legacy port, using "scanport" (Debian only ??) will scan all bus ports and may discover an
unknown port that could be a serial port (but it doesn't probe the port). It could hang your PC. You may try
probing with setserial. See Probing.

If nothing seems to get thru the port it may be accessible but have a bad interrupt. See Extremely Slow: Text
appears on the screen slowly after long delays. Use setserial −g to see what the serial driver thinks and
check for IRQ and I0 address conflicts. Even if you see no conflicts the driver may have incorrect information
(view it by "setserial") and conflicts may still exist.

If two ports have the same IO address then probing it will erroneously indicate only one port. Plug−and−play
detection will find both ports so this should only be a problem if at least one port is not plug−and−play. All
sorts of errors may be reported/observed for devices illegally "sharing" a port but the fact that there are two
devices on the same a port doesn't seem to get detected (except hopefully by you). In the above case, if the
IRQs are different then probing for IRQs with setserial might "detect" this situation by failing to detect any
IRQ. See Probing.

17.14 Extremely Slow: Text appears on the screen slowly
after long delays

It's likely mis−set/conflicting interrupts. Here are some of the symptoms which will happen the first time you
try to use a modem, terminal, or serial printer. In some cases you type something but nothing appears on the
screen until many seconds later. Only the last character typed may show up. It may be just an invisible
<return> character so all you notice is that the cursor jumps down one line. In other cases where a lot of data
should appear on the screen, only a batch of about 16 characters appear. Then there is a long wait of many
seconds for the next batch of characters. You might also get "input overrun" error messages (or find them in
logs).

For more details on the symptoms and why this happens see the Serial−HOWTO section: "Interrupt Problem
Details".

 Modem−HOWTO

17.12 (The following subsections are in both the Serial and Modem HOWTOs) 72

If it involves Plug−and−Play devices, see also Plug−and−Play−HOWTO.

As a quick check to see if it really is an interrupt problem, set the IRQ to 0 with "setserial". This will tell the
driver to use polling instead of interrupts. If this seems to fix the "slow" problem then you had an interrupt
problem. You should still try to solve the problem since polling uses excessive computer resources.

Checking to find the interrupt conflict may not be easy since Linux supposedly doesn't permit any interrupt
conflicts and will send you a /dev/ttyS?: Device or resource busy error message if it thinks you are attempting
to create a conflict. But a real conflict can be created if "setserial" has told the kernel incorrect info. The
kernel has been lied to and thus doesn't think there is any conflict. Thus using "setserial" will not reveal the
conflict (nor will looking at /proc/interrupts which bases its info on "setserial"). You still need to know what
"setserial" thinks so that you can pinpoint where it's wrong and change it when you determine what's really set
in the hardware.

What you need to do is to check how the hardware is set by checking jumpers or using PnP software to check
how the hardware is actually set. For PnP run either "pnpdump −−dumpregs" (if ISA bus) or run "lspci" (if
PCI bus). Compare this to how Linux (e.g. "setserial") thinks the hardware is set.

17.15 Somewhat Slow: I expected it to be a few times faster

An obvious reason is that the baud rate is actually set too slow. It's claimed that this happened by trying to set
the baud rate to a speed higher than the hardware can support (such as 230400).

Another reason may be that whatever is on the serial port (such as a modem, terminal, printer) doesn't work as
fast as you thought it did. A 56k Modem seldom works at 56k and the Internet often has congestion and
bottlenecks that slow things down. If the modem on the other end does not have a digital connection to the
phone line (and uses a special "digital modem" not sold in most computer stores), then speeds above 33.6k are
not possible.

Another possible reason is that you have an obsolete serial port: UART 8250, 16450 or early 16550 (or the
serial driver thinks you do). See "What are UARTS" in the Serial−HOWTO.

Use "setserial −g /dev/ttyS*". If it shows anything less than a 16550A, this may be your problem. If you think
that "setserial" has it wrong check it out. See What is Setserial for more info. If you really do have an obsolete
serial port, lying about it to setserial will only make things worse.

17.16 The Startup Screen Show Wrong IRQs for the Serial
Ports.

For non−PnP ports, Linux does not do any IRQ detection on startup. When the serial module loads it only
does serial device detection. Thus, disregard what it says about the IRQ, because it's just assuming the
standard IRQs. This is done, because IRQ detection is unreliable, and can be fooled. But if and when setserial
runs from a start−up script, it changes the IRQ's and displays the new (and hopefully correct) state on on the
startup screen. If the wrong IRQ is not corrected by a later display on the screen, then you've got a problem.

So, even though I have my ttyS2 set at IRQ 5, I still see

ttyS02 at 0x03e8 (irq = 4) is a 16550A

 Modem−HOWTO

17.15 Somewhat Slow: I expected it to be a few times faster 73

at first when Linux boots. (Older kernels may show "ttyS02" as "tty02" which is the same as ttyS2). You may
need to use setserial to tell Linux the IRQ you are using.

17.17 "Cannot open /dev/ttyS?: Permission denied"

Check the file permissions on this port with "ls −l /dev/ttyS?"_ If you own the ttyS? then you need read and
write permissions: crw with the c (Character device) in col. 1. It you don't own it then it should show rw− in
cols. 8 & 9 which means that everyone has read and write permission on it. Use "chmod" to change
permissions. There are more complicated ways to get access like belonging to a "group" that has group
permission.

17.18 "Operation not supported by device" for ttyS?

This means that an operation requested by setserial, stty, etc. couldn't be done because the kernel doesn't
support doing it. Formerly this was often due to the "serial" module not being loaded. But with the advent of
PnP, it may likely mean that there is no modem (or other serial device) at the address where the driver (and
setserial) thinks it is. If there is no modem there, commands (for operations) sent to that address obviously
don't get done. See What is set in my serial port hardware?

If the "serial" module wasn't loaded but "lsmod" shows you it's now loaded it might be the case that it's loaded
now but wasn't loaded when you got the error message. In many cases the module will automatically loaded
when needed (if it can be found). To force loading of the "serial" module it may be listed in the file:
/etc/modules.conf or /etc/modules. The actual module should reside in: /lib/modules/.../misc/serial.o.

17.19 "Cannot create lockfile. Sorry"

When a port is "opened" by a program a lockfile is created in /var/lock/. Wrong permissions for the lock
directory will not allow a lockfile to be created there. Use "ls −ld /var/lock" to see if the permissions are OK:
usually rwx for everyone (repeated 3 times). If it's wrong, use "chmod" to fix it. Of course, if there is no
"lock" directory no lockfile can be created there. For more info on lockfiles see the Serial−HOWTO
subsection: "What Are Lock Files".

17.20 "Device /dev/ttyS? is locked."

This means that someone else (or some other process) is supposedly using the serial port. There are various
ways to try to find out what process is "using" it. One way is to look at the contents of the lockfile
(/var/lock/LCK...). It should be the process id. If the process id is say 100 type "ps 100" to find out what it is.
Then if the process is no longer needed, it may be gracefully killed by "kill 100". If it refuses to be killed use
"kill −9 100" to force it to be killed, but then the lockfile will not be removed and you'll need to delete it
manually. Of course if there is no such process as 100 then you may just remove the lockfile but in most cases
the lockfile should have been automatically removed if it contained a stale process id (such as 100).

17.21 "/dev/tty? Device or resource busy"

This means that the device you are trying to access (or use) is supposedly busy (in use) or that a resource it
needs (such as an IRQ) is supposedly being used by another device and can't be shared. This message is easy
to understand if it only means that the device is busy (in use). But it often means that a needed resource is
already in use (busy). What makes it even more confusing is that in some cases neither the device nor the

 Modem−HOWTO

17.17 "Cannot open /dev/ttyS?: Permission denied" 74

resources that it needs are actually "busy".

The following example is where interrupts can't be shared (at least one of the interrupts is on the ISA bus).
The ``resource busy'' part often means (example for ttyS2) ``You can't use ttyS2 since another device is
using ttyS2's interrupt.'' The potential interrupt conflict is inferred from what "setserial" thinks. A more
accurate error message would be ``Can't use ttyS2 since the setserial data (and kernel data) indicates that
another device is using ttyS2's interrupt''. If two devices use the same IRQ and you start up only one of the
devices, everything is OK because there is no conflict yet. But when you next try to start the second device
(without quitting the first device) you get a "... busy" error message. This is because the kernel only keeps
track of what IRQs are actually in use and actual conflicts don't happen unless the devices are in use (open).
The situation for I/O address (such as 0x3f8) conflict is similar.

This error is sometimes due to having two serial drivers: one a module and the other compiled into the kernel.
Both drivers try to grab the same resources and one driver finds them "busy".

There are two possible cases when you see this message:

There may be a real resource conflict that is being avoided.1.
Setserial has it wrong and the only reason ttyS2 can't be used is that setserial erroneously predicts a
conflict.

2.

What you need to do is to find the interrupt setserial thinks ttyS2 is using. Look at /proc/tty/driver/serial.
You should also be able to find it with the "setserial" command for ttyS2.

Bug in old versions: Prior to 2001 there was a bug which wouldn't let you see it with "setserial". Trying to see
it would give the same "... busy" error message.

To try to resolve this problem reboot or: exit or gracefully kill all likely conflicting processes. If you reboot: 1.
Watch the boot−time messages for the serial ports. 2. Hope that the file that runs "setserial" at boot−time
doesn't (by itself) create the same conflict again.

If you think you know what IRQ say ttyS2 is using then you may look at /proc/interrupts to find what else
(besides another serial port) is currently using this IRQ. You might also want to double check that any
suspicious IRQs shown here (and by "setserial") are correct (the same as set in the hardware). A way to test
whether or not it's a potential interrupt conflict is to set the IRQ to 0 (polling) using "setserial". Then if the
busy message goes away, it was likely a potential interrupt conflict. It's not a good idea to leave it
permanently set at 0 since it will put more load on the CPU.

17.22 "Input/output error" from setserial, stty, pppd, etc.

This means that communication with the serial port isn't working right. It could mean that there isn't any serial
port at the IO address that setserial thinks your port is at. It could also be an interrupt conflict (or an IO
address conflict). It also may mean that the serial port is in use (busy or opened) and thus the attempt to get/set
parameters by setserial or stty failed. It will also happen if you make a typo in the serial port name such as
typing "ttys" instead of "ttyS".

17.23 "LSR safety check engaged"

LSR is the name of a hardware register. It's claimed that this means there is no serial port at the specified
address.

 Modem−HOWTO

17.22 "Input/output error" from setserial, stty, pppd, etc. 75

17.24 Overrun errors on serial port

This is an overrun of the hardware FIFO buffer and you can't increase its size. Bug note (reported in 2002):
Due to a bug in some kernel 2.4 versions, the port number may be missing and you will only see "ttyS" (no
port number). But if devfs notation such as "tts/2" is being used, there is no bug. See "Higher Serial Thruput"
in the Serial−HOWTO.

17.25 Modem doesn't pick up incoming calls

This paragraph is for the case where a modem is used for both dial−in and dial−out. If the modem generates a
DCD (=CD) signal, some programs (but not mgetty) will think that the modem is busy. This will cause a
problem when you are trying to dial out with a modem and the modem's DCD or DTR are not implemented
correctly. The modem should assert DCD only when there is an actual connection (ie someone has dialed in),
not when getty is watching the port. Check to make sure that your modem is configured to only assert DCD
when there is a connection (&C1). DTR should be on (asserted) by the communications program whenever
something is using, or watching the line, like getty, kermit, or some other comm program.

17.26 Port get characters only sporadically

There could be some other program running on the port. Use "top" (provided you've set it to display the port
number) or "ps −alxw". Look at the results to see if the port is being used by another program. Be on the
lookout for the gpm mouse program which often runs on a serial port.

17.27 Troubleshooting Tools

These are some of the programs you might want to use in troubleshooting:

"lsof /dev/ttyS*" will list serial ports which are open.•
"setserial" shows and sets the low−level hardware configuration of a port (what the driver thinks it is).
See What is Setserial

•

"stty" shows and sets the configuration of a port (except for that handled by "setserial"). See the
Serial−HOWTO section: "Stty".

•

"modemstat" or "statserial" will show the current state of various modem signal lines (such as DTR,
CTS, etc.)

•

"irqtune" will give serial port interrupts higher priority to improve performance.•
"hdparm" for hard−disk tuning may help some more.•
"lspci" shows the actual IRQs, etc. of hardware on the PCI bus.•
"pnpdump −−dumpregs" shows the actual IRQs, etc. of hardware for PnP devices on the ISA bus.•
Some "files" in the /proc tree (such as ioports, interrupts, and tty/driver/serial).•

18. Flash Upgrades

Many modems can be upgraded by reprogramming their flash memories with an upgrade program which you
get from the Internet. By sending this "program" from the PC via the serial port to the modem, the modem
will store this program in its non−volatile memory (it's still there when the power is turned off). The
instructions on installing it are usually on how to do in under Windows so you'll need to figure out how to do
the equivalent under Linux (unless you want to install the upgrade under Windows). Sending the program to
the modem is often called a download.

 Modem−HOWTO

17.24 Overrun errors on serial port 76

If the latest version of this HOWTO still contains this request (see New Versions of this HOWTO) please
send me your experiences with installing such upgrades that will be helpful to others.

Here's the general idea of doing an upgrade. First, there may be a command that you need to send your
modem to tell it that what follows is a flash ROM upgrade. In one case this was AT** You can do this by
starting a communications program (such as minicom) and type. First type AT <enter> to see if your modem
is there and answers "OK".

Next, you need to send an file (sometimes two files) directly to the modem. Communication programs (such
as minicom) often use zmodem or kermit to send files to the modem (and beyond) but these put the file into
packets which append headers and you want the exact file sent to the modem, not a modified one. But the
kermit communications program has a "transmit" command that will send the file directly (without using the
kermit packets) so this is one way to send a file directly. Minicom didn't have this feature in 1998.

Another way to send the file(s) would be to escape from the communications program to the shell (in minicom
this is ^AJ) and then: cat upgrade_file_name > /dev/ttyS2 (if your serial port is ttyS2). Then go
back to the communication program (type fg at the command line prompt in minicom) to see what happened.

Here's an example session for a certain Rockwell modem (C−a is ^A):

− Run minicom
− Type AT** : see "Download initiated ..."
− C−a J
− cat FLASH.S37 > /dev/modem
− fg : see "Download flash code ..."
− C−a J
− cat 283P1722.S37 > /dev/modem
− fg : see "Device successfully programmed"

19. Other Sources of Information

19.1 Misc

man pages for: agetty(8), getty(1m), gettydefs(5), init(1), isapnp(8),
login(1), mgetty(8), setserial(8)

•

Your modem manual (if it exists). Some modems come without manuals.•
Serial Suite by Vern Hoxie is a collection of blurbs about the care and feeding of the Linux serial port
plus some simple programs.

•

The Linux serial mailing list. To subscribe, send email to majordomo@vger.rutgers.edu, with
``subscribe linux−serial'' in the message body. If you send ``help'' in the message body,
you get a help message. The server also serves many other Linux lists. Send the ``lists'' command
for a list of mailing lists.

•

19.2 Books

I've been unable to find a good up−to−date book on modems.

The Complete Modem Reference by Gilbert Held, 1997. Contains too much info about obsolete
topics. More up−to−date info may be found on the Internet.

•

Modems For Dummies by Tina Rathbone, 1996. (Have never seen it.)•

 Modem−HOWTO

19. Other Sources of Information 77

ftp://scicom.alphacdc.com/pub/linux/
mailto:majordomo@vger.rutgers.edu

The Modem Technical Guide by Douglas Anderson, 1996.•
Ultimate Modem Handbook by Cass R. Lewart, 1998.•
Black, Uyless D.: Physical Layer Interfaces & Protocols, IEEE Computer Society Press, Los
Alamitos, CA, 1996.

•

19.3 HOWTOs

Cable−Modem mini−howto•
SuSE ISDN Howto (not a LDP Howto) http://sol.parkland.cc.il.us/sdb/en/html/isdn.html or
http://brenner.chemietechnik.uni−dortmund.de/doc/sdb/en/html/isdn.html

•

Linux−Modem−Sharing mini−howto. Computers on a network share a single modem for dial−out
(like a shared printer).

•

Modems−HOWTO: In French (Not used in creating this Modem−HOWTO)•
NET−3−4−HOWTO: all about networking, including SLIP, CSLIP, and PPP•
PPP−HOWTO: help with PPP including modem set−up•
Serial−HOWTO has info on Multiport Serial Cards used for both terminals and banks of modems.
Covers the serial port in more detail than in the HOWTO.

•

Serial−Programming−HOWTO: for some aspects of serial−port programming•
Text−Terminal−HOWTO: (including connecting up with modems)•
UUCP−HOWTO: for information on setting up UUCP•

19.4 Usenet newsgroups

comp.os.linux.answers; FAQs, How−To's, READMEs, etc. about Linux.•
comp.os.linux.hardware; Hardware compatibility with the Linux operating system.•
comp.os.linux.setup; Linux installation and system administration.•
comp.dcom.modems; Modems for all OS's•

19.5 Web Sites

Modem List of modems which work/don't_work under Linux
http://www.idir.net/~gromitkc/winmodem.html

•

Linux Serial Driver home page Includes info about support for PCI modems.•
Hayes AT modem commands Technical Reference for Hayes (tm) Modem Users•
AT Command Set and Register Summary for Analog Modem Modules (Cisco)•
Controlling your Modem with AT Commands•
Modem FAQs:
Navas 28800−56K Modem FAQ

•

Curt's High Speed Modem Page•
Much info on 56k modems 56k Modem = v.Unreliable•
Links to modem manufacturers•
More Links to modem manufacturers•
http://search.fcc.gov/ name="Search for manufacturer by FCC ID">•

20. Appendix A: How Analog Modems Work (technical)
(unfinished)

 Modem−HOWTO

19.3 HOWTOs 78

http://sol.parkland.cc.il.us/sdb/en/html/isdn.html
http://brenner.chemietechnik.uni-dortmund.de/doc/sdb/en/html/isdn.html
http://www.idir.net/~gromitkc/winmodem.html
http://serial.sourceforge.net/
http://www-dcg.fnal.gov/Net/HYSTRM20.TXT
http://www.cisco.com/univercd/cc/td/doc/product/access/acs_mod/cis3600/analogfw/analogat.htm
http://www.zoltrix.com/support_html/modem/USEMODEM.HTM
http://modemfaq.home.att.net/
http://www.net-boy.com
http://808hi.com/56k/
http://www.56k.com/links/Modem_Manufacturers/
http://modems.rosenet.net/

20.1 Modulation Details

Intro to Modulation

This part describes the modulation methods used for conventional modems. It doesn't cover the high speed
PCM methods (modulus conversion) sometimes used by 56k Modems (V.90, V.92). But 56k modems also use
the modulation methods described here.

Modulation is the conversion of a digital signal represented by binary binary (0 or 1) into an analog signal
something like a sine wave. The modulated signal consists pure sine wave "carrier" signal which is modified
to convey information. A pure carrier sine wave, unchanging in frequency and voltage, provides no flow of
information at all (except that a carrier is present). To make it convey information we modify (or modulate)
this carrier. There are 3 basic types of modulation: frequency, amplitude, and phase. They will be explained
next.

Frequency Modulation

The simplest modulation method is frequency modulation. Frequency is measured in cycles per second (of a
sine wave). It's the count of the number of times the sine wave shape repeats itself in a second. This is the
same as the number of times it reaches it peak value during a second. The word "Hertz" (abbreviated Hz) is
used to mean "cycles per second".

A simple example of frequency modulation is where one frequency means a binary 0 and another means a 1.
For example, for some obsolete 300 baud modems 1070 Hz meant a binary 0 while 1270 Hz meant a binary 1.
This was called "frequency shift keying". Instead of just two possible frequencies, more could be used to
allow more information to be transmitted. If we had 4 different frequencies (call them A, B, C, and D) then
each frequency could stand for a pair of bits. For example, to send 00 one would use frequency A. To send 01,
use frequency B; for 10 use C; for 11 use D. In like manner, by using 8 different frequencies we could send 3
bits with each shift in frequency. Each time we double the number of possible frequencies we increase the
number of bits it can represent by 1.

Amplitude Modulation

Once one understands frequency modulation example above including the possibilities of representing a few
bits by a single shift in frequency, it's easier to understand both amplitude modulation and phase modulation.
For amplitude modulation, one just changes the height (voltage) of the sine wave analogous to changing the
frequency of the sine wave. For a simple case there could only be 2 allowed amplitude levels, one
representing a 0−bit and another representing a 1−bit. As explained for the case of frequency modulation,
having more possible amplitudes will result in more information being transmitted per change in amplitude.

Phase Modulation

To change the phase of a sine wave at a certain instant of time, we stop sending this old sine wave and
immediately begin sending a new sine wave of the same frequency and amplitude. If we started sending the
new sine wave at the same voltage level (and slope) as existed when we stopped sending the old sine wave,
there would be no change in phase (and no detectable change at all). But suppose that we started up the new
sine wave at a different point on the sine wave curve. Then there would likely be a sudden voltage jump at the
point in time where the old sine wave stopped and the new sine wave began. This is a phase shift and it's
measured in degrees (deg.) A 0 deg. (or a 360 deg.) phase shift means no change at all while a 180 deg. phase

 Modem−HOWTO

 20.1 Modulation Details 79

shift just reverses the voltage (and slope) of the sine wave. Put another way, a 180 deg. phase shift just skips
over a half−period (180 deg.) at the point of transition. Of course we could just skip over say 90 deg. or 135
deg. etc. As in the example for frequency modulation, the more possible phase shifts, the more bits a single
shift in phase can represent.

Combination Modulation

Instead of just selecting either frequency, amplitude, or phase modulation, we may chose to combine
modulation methods. Suppose that we have 256 possible frequencies and thus can send a byte (8 bits) for each
shift in frequency (since 2 to the 8 power is 256). Suppose also that we have another 256 different amplitudes
so that each shift in amplitude represents a byte. Also suppose there are 256 possible phase shifts. Then a
certain points in time we may make a shift in all 3 things: frequency, amplitude and phase. This would send
out 3 bytes for each such transition.

No modulation method in use today actually does this. It's not practical due to the relatively long time it
would take to detect all 3 types of changes. The main problem is that frequent shifts in phase can make it
appear that a shift in frequency has happened when it actually didn't.

To avoid this difficulty one may simultaneous change only the phase and amplitude (with no change in
frequency). This is called phase−amplitude modulation. It is also called quadrature amplitude modulation (=
QAM) since there were only 4 possible phases (quadrature) in early versions of it. This method is used today
for the common modem speeds of 14.4k, 28.8k, and 33.6k. The only significant case where this modulation
method is not used today is for 56k modems. But even 56k modems exclusively use QAM (phase−amplitude
modulation) in the direction from your PC out the telephone line. Sometimes even the other direction will also
fall back to QAM when line conditions are not good enough. Thus QAM (phase−amplitude modulation) still
remains the most widely used method on ordinary telephone lines.

20.2 56k Modems (V.90, V.92)

The "modulation" method used for speeds above 33.6k is entirely different than the common phase−amplitude
modulation used at 33.6k and below. Since ordinary telephone calls are converted to digital signals at the local
offices of the telephone company, the fastest speed that you can send digital data by an ordinary telephone call
is the same speed that the telephone company uses over its digital portion of its network (for a phone call).
What is this speed? Well, it's close to 64kbps. It would be 64k but sometimes bits are "stolen" for signalling
purposes. But if the phone Co. knows that the link is not for voice, bits may not get stolen. The case of 64k
will be presented and then it will be explained why the actual speed is lower (56k or less −−often significantly
less).

Thus 64k is the absolute top speed possible (not counting date compression) for an ordinary telephone call
using the digital portion of the circuit that was designed to send digital encodings of the human voice. In order
to use 64k, the modems need to either have direct access to the digital portion of the circuit or be able to
determine the exact digital signal that generated a received analog signal (and conversely). This task is far too
error prone if both sides of a telephone call have only an analog interface to the telephone company. But if
one side has a digital interface, then it's possible (in one direction for V.90 and in both directions for V.92).
Thus if your ISP has a digital interface to the phone company, the ISP may send out a certain digital signal
over the phone lines toward your PC. The digital signal from the ISP gets converted to analog at the local
telephone office near your PC's location (perhaps near your home). Then it's your modem's task to try to
figure out exactly what that digital signal was. If it could do this then transmission at 64k (the speed of the
telephone company's digital signal) is possible in this direction.

 Modem−HOWTO

Combination Modulation 80

What method does the telephone company use to digitally encode analog signals? It uses a method of
sampling the amplitude of the analog signal at a rate of 8000 samples per second. Each sample amplitude is
encoded as a 8−bit byte. (Note: 8 x 8000 = 64k) This is called "Pulse Code Modulation" = PCM. These bytes
are then sent digitally on the telephone company's digital circuits where many calls share a single circuit using
a time−sharing scheme known as "time division multiplexing". Then finally at a local telephone office near
your home, the digital signal is de−multiplexed resulting in the same digital signal as was originally created
by PCM. Then this signal is converted back to analog and sent to your home. This analog to digital conversion
(and conversely) is done by telephone company hardware called a "codec" (coder/decoder). Each PCM 8−bit
byte creates a certain amplitude of the analog signal. Your modem's task is to determine just what that PCM
8−bit byte was, based on the analog amplitude it detects.

This was originally called is called "modulus conversion". It's now often called "PCM"−something since its
just like encoding/decoding PCM but with the added problem of sampling at the precise time that the codec
generated the analog voltage from the digital PCM code.

In order to determine the digital codes the telephone Co. used to create the analog signal, the modem must
sample this analog signal amplitude at exactly the same points in time the phone Co. did when it created the
analog signal. To do this an 8kHz clock timing signal is generated with help from a residual 4kHz signal on
the analog phone line. The creation of amplitudes to go out to your home/office at 8k amplitudes/sec sort of
creates a 4kHz signal. Suppose every other amplitude was of opposite polarity. Then there would be a 4kHz
sine−like wave created. Each amplitude is in a sense a 8−bit symbol and when to sample amplitudes is known
as "symbol timing". The modem's task is to insure that it's 8kHz clock runs at precisely twice the speed of the
4kHz signal (which could drift slightly off 4kHz) and that the modem's clock is synchronized with that used
by the telephone company's codec. The actual electronics may use much higher frequency clocks (dividing
them down) and take more than a single sample. If you know how this synchronization works, let me know (if
this is a recent Modem−HOWTO).

Now the encoding of amplitudes in PCM is not linear. At low amplitudes an increment of 1 in the PCM byte
value represents a much smaller increment (delta) in analog signal amplitude than would be the case if the
amplitude being sampled were much higher. Thus for low amplitudes it's difficult to distinguish between
adjacent byte values. To make it easier to do this (for 56k modems) certain PCM codes representing very low
amplitudes are not used. This gives a larger delta between possible amplitudes and makes correct detection of
them by your modem easier. Thus half of the amplitude levels are not used (in the downstream direction) by
V.90 or V.92. This is tantamount to each symbol (valid amplitude level) representing 7 bits instead of 8. This
is where 56k comes from: 7 bits/symbol x 8k symbols/sec = 56k bps. Of course each amplitude symbol is
actually generated by 8−bits but only 128 bytes of the possible 256 bytes are actually used by the ISP sender.
There is a code table mapping these 128 8−bit bytes to 128 7−bit bytes. It's not just a simple mapping like
ignoring the last bit. Thus to send 7 normal data bytes (8−bits) will take 8 of the above mentioned bytes.

But it's a little more complicated that this. If the line conditions are not nearly perfect or if the direction is
upstream (V.92 only), then even fewer possible levels (symbols) are used resulting in speeds under 56k. Also
due to US government rules prohibiting high power levels on phone lines, certain high amplitudes levels can't
be used resulting in only about 53.3k at best for "56k" modems in the downstream direction.

Note that the digital part of the telephone network is bi−directional. Two such circuits are used for a phone
call, one in each direction. For V.90, the 56k signal is only used in one of these directions: from your ISP to
your PC (called the "downstream" direction). For this V.90, the other direction (upstream, from your
home/office to the ISP) uses the conventional phase−amplitude modulation scheme with a maximum of
36.6kbps (and not 53.3kbps). For V.92, this upstream direction also uses the PCM method and supports up to
48 kbps. The analog portion of the circuit from your home/office to the nearest telephone Co. office was never
intended to be bi−directional since it's only a single twisted pair. But due to sophisticated cancellation

 Modem−HOWTO

Combination Modulation 81

methods it's able to convey data simultaneously in both directions as explained in the next subsection. It's
claimed that with V.92, it's almost impossible to get maximum thruput in both directions simultaneously due
to the difficulties of bi−directional flow on a single circuit.

20.3 Full Duplex on One Circuit

Modern modems are able to both send and receive signals simultaneously. One could call this "bidirectional"
or "full duplex". This was once done by using one frequency for sending and another for receiving. Today, the
same frequency is used for both sending and receiving. How this works is not easy to comprehend.

Most of the telephone system "main lines" are digital with two channels in use when you make a telephone
call. What you say goes over one digital channel and what the other person says goes over the other (reverse)
digital channel. Unfortunately, the part of the telephone system which goes to homes (and many offices) is not
digital but only a single analog channel. If both modems were directly connected to the digital part of the
phone system then bidirectional communication (sending and receiving at the same time) would be no
problem because two channels would be available.

But the end portion of the signal path goes over just one circuit. How can there be two−way communication
on it simultaneously? It works something like this. Suppose your modem is receiving a signal from the other
modem and is not transmitting. Then there's no problem. But if your modem were to start transmitting (with
the other received signal still flowing into your modem) it would drown out the received signal. If the
transmitted signal was a "solid" voltage wave applied to the end of the line then there is no way any received
signal could be present at that point.

But the transmitter has "internal impedance" and the transmitted signal applied to the end of the line is not
solid (or strong enough) to completely eliminate the received signal coming from the other end. Thus while
the voltage at the end of the line is mostly the stronger transmitted signal a small part of it is the desired
received signal. All that is needed is to filter out this stronger transmitted signal and then what remains will be
the signal from the other end which we want. To do this, one only needs to get the pure transmitted signal
directly from the transmitter (before it's applied to the line) amplify it a determined amount, and then subtract
it from the total signal present at the end of the line. Doing this in the receiver circuits leaves a signal which
mostly came from the other end of the line.

20.4 Echo Cancellation

An analog signal traveling down a line in one direction may encounter changes in the line that will cause part
of the signal to echo back in the opposite direction. Since the same circuit is used for bi−directional flow of
data, such echos will result in garbled reception. One way to ameliorate this problem is to send training
signals once in a while to determine the echo characteristic of the line. This will enable one to predict the
echos that will be generated by any given signal. Then this prediction method is used to predict what echos the
transmitted signal will cause. Then this predicted echo signal is subtracted from the received signal. This
cancels out the echoes.

21. Appendix B: (Reserved for future use)

 Modem−HOWTO

20.3 Full Duplex on One Circuit 82

22. Appendix C: "baud" vs. "bps"

22.1 A simple example

``baud'' and ``bps'' are perhaps one of the most misused terms in the computing and telecommunications field.
Many people use these terms interchangeably, when in fact they are not! bps is simply the number of bits
transmitted per second. The baud rate is a measure of how many times per second a signal changes (or could
change). For a typical serial port a 1−bit is −12 volts and a 0−bit is +12 v (volts). If the bps is 38,400 a
sequence of 010101... would also be 38,400 baud since the voltage shifts back and forth from positive to
negative to positive, etc. and there are 38,400 shifts per second. For another sequence say 111000111... there
will be fewer shifts of voltage since for three 1's in sequence the voltage just stays at −12 volts yet we say that
its still 38,400 baud since there is a possibility that the number of changes per second will be that high.

Looked at another way, put an imaginary tic mark separating each bit (even though the voltage may not
change). 38,400 baud then means 38,400 tic marks per second. The tic marks at at the instants of permitted
change and are actually marked by a synchronized clock signal generated in the hardware but not sent over the
external cable.

Suppose that a "change" may have more than the two possible outcomes of the previous example (of +− 12 v).
Suppose it has 4 possible outcomes, each represented by a unique voltage level. Each level may represent a
pair of bits (such as 01). For example, −12v could be 00, −6v 01, +6v 10 and +12v 11. Here the bit rate is
double the baud rate. For example, 3000 changes per second will generate 2 bits for each change resulting in
6000 bits per second (bps). In other words 3000 baud results in 6000 bps.

22.2 Real examples

The above example is overly simple. Real examples are more complicated but based on the same idea. This
explains how a modem running at 2400 baud, can send 14400 bps (or higher). The modem achieves a bps rate
greater than baud rate by encoding many bits in each signal change (or transition). Thus, when 2 or more bits
are encoded per baud, the bps rate exceeds the baud rate. If your modem−to−modem connection is at 14400
bps, it's going to be sending 6 bits per signal transition (or symbol) at 2400 baud. A speed of 28800 bps is
obtained by 3200 baud at 9 bits/baud. When people misuse the word baud, they may mean the modem speed
(such as 33.6k).

Common modem bps rates were formerly 50, 75, 110, 300, 1200, 2400, 9600. These were also the bps rates
over the serial_port−to−modem cables. Today the bps modem−to−modem (maximum) rates are 14.4k, 28.8k,
33.6k, and 56k, but the common rates over the serialPort−to−modem cables are not the same but are: 19.2k,
38.4k, 57.6k, 115.2k, 230.4k. The high speed of 230.4k is (as of late 2000) unfortunately not provided by
most new (and old) hardware. Using modems with V.42bis compression (max 4:1 compression), rates up to
115.2k bps are possible for 33.6k modems. 203.2k (4 x 53.3k) is possible for 56k modems.

Except for 56k modems, most modems run at 2400, 3000, or 3200 baud. Even the 56k modems use these
bauds for transmission and sometimes fall back to them for reception. Because of the bandwidth limitations
on voice−grade phone lines, baud rates greater than 2400 are harder to achieve, and only work under
conditions of good phone line quality.

How did this confusion between bps and baud start? Well, back when antique low speed modems were high
speed modems, the bps rate actually did equal the baud rate. One bit would be encoded per phase change.
People would use bps and baud interchangeably, because they were the same number. For example, a 300 bps

 Modem−HOWTO

22. Appendix C: "baud" vs. "bps" 83

modem also had a baud rate of 300. This all changed when faster modems came around, and the bit rate
exceeded the baud rate. ``baud'' is named after Emile Baudot, the inventor of the asynchronous telegraph
printer. One way this problem gets resolved is to use the term "symbol rate" instead of "baud" and thus avoid
using the term "baud". However when talking about the "speeds" between the modem and the serial port
(DTE speed) baud and the symbol rate are the same. And even "speed" is a misnomer since we really mean
flow rate.

23. Appendix D: Terminal Server Connection

This section was adapted from Text−Terminal−HOWTO.

A terminal server is something like an intelligent switch that can connect many modems (or terminals) to one
or more computers. It's not a mechanical switch so it may change the speeds and protocols of the streams of
data that go thru it. A number of companies make terminal servers: Xyplex, Cisco, 3Com, Computone,
Livingston, etc. There are many different types and capabilities. Another HOWTO is needed to compare and
describe them (including the possibility of creating your own terminal server with a Linux PC). Most are used
for modem connections rather than directly connected terminals.

One use for them is to connect many modems (or terminals) to a high speed network which connects to host
computers. Of course the terminal server must have the computing power and software to run network
protocols so it is in some ways like a computer. The terminal server may interact with the user and ask what
computer to connect to, etc. or it may connect without asking. One may sometimes send jobs to a printer thru
a terminal server.

A PC today has enough computing power to act like a terminal server except that each serial port should have
its own hardware interrupt. PC's only have a few spare interrupts for this purpose and since they are
hard−wired you can't create more by software. A solution is to use an advanced multiport serial card which
has its own system of interrupts (or on lower cost models, shares one of the PC's interrupts between a number
of ports). See Serial−HOWTO for more info. If such a PC runs Linux with getty running on many serial ports
it might be thought of as a terminal server. It is in effect a terminal server if it's linked to other PC's over a
network and if its job is mainly to pass thru data and handle the serial port interrupts every 14 (or so) bytes.
Software called "radius" is sometimes used.

Today real terminal servers serve more than just terminals. They also serve PC's which emulate terminals, and
are sometimes connected to a bank of modems connected to phone lines. Some even include built−in
modems. If a terminal (or PC emulating one) is connected directly to a modem, the modem at the other end of
the line could be connected to a terminal server. In some cases the terminal server by default expects the
callers to use PPP packets, something that real text terminals don't generate.

24. Appendix E: Digital Modems: ISDN, DSL, RAS

24.1 Introduction

This HOWTO only deals with the common type of analog modem used to connect PC's to ordinary analog
telephone lines. The standard definition of a modem is sometimes broadened to include digital "modems".
Today direct digital service is now being provided to many homes and offices so that a computer there sends
out digital signals directly (well almost) into the telephone lines. But a device is still needed to convert the
computer digital signal into the type of digital signal used telephone circuits. This device is sometimes called
a modem. While this HOWTO doesn't cover such modems, some links to documents that do may be found at

 Modem−HOWTO

23. Appendix D: Terminal Server Connection 84

the start of this HOWTO. The next 3 sub−sections: ISDN, DSL and 56k, briefly mention such "modems".

24.2 ISDN "Modems"

Such a "modem" is really a Terminal Adapter (TA). Support for some of them can be built into the kernel 2.4
or added as a module. The kernel documentation has an isdn subdirectory. Configuration might use
"isdn−config" GUI. A Debian package "isdnutils" is available. There is SuSE ISDN Howto (not a LDP
Howto) which is translated from German http://sol.parkland.cc.il.us/sdb/en/html/isdn.html There is an
isdn4linux package and a newsgroup: de.alt.comm.isdn4linux. Many of the postings are in German. You
might try using a search engine to look for "isdn4linux".

24.3 Digital Subscriber Line (DSL)

DSL uses the existing twisted pair line from your home (etc.) to the local telephone office. This can be used if
your telephone line can accept significantly higher speeds than an ordinary modem would use. It replaces the
analog−to−digital converter at the local telephone office with a converter which can accept a much faster flow
of data (in a different format of course). The device which converts the digital signals from your computer to
the signal used to represent digital data on the local telephone line is also called a modem.

24.4 56k Digital−Modems

These are not the 56k modems that people use in their PCs. They are the "modems" at an ISP that these 56k
modems connect to. The ISP must be connected directly to the digital system of the telephone company,
otherwise the customers modem can't be used as a 56k modem. The ISP likely has banks of many modems
multiplexed onto a high capacity telephone cable that transports a large number of phone calls simultaneously
(such as a T1, E1, ISDN PRI, etc.). This requires a concentrator or "remote access server" (RAS). This has
previously been done by stand−alone units (like PC's but they cost much more and have proprietary OSs).
Now there are some cards one may insert into a PC's PCI bus to do this. See Digital Modems)

25. Appendix F: Leased Line Modems

See the mini−howto: Leased−Line which covers leased lines where there is no dialtone. Leased line modems
are analog and not digital. These special modems are used on lines leased from the telephone company or
sometimes on just a long direct wire hookup. They often will also work as ordinary modems but go into
leased−line mode when the AT command &L1 is given.

Ordinary modems for a telephone line will not normally work on such a leased line. An ordinary telephone
line has about 40−50 volts (known as the "battery) on it when not in use and the conventional modem uses
this voltage for transmission. Furthermore, the telephone company has special signals indicating a ring, line
busy, etc. Conventional modems expect and respond to these signals. Connecting two such modems by a long
cable will not provide the telephone signals on the cable and thus the modems will not work.

Leased−line modems often use a "dumb mode" where they ignore AT commands, disable result reporting, etc.
One type of leased line used two pairs of wires (one for each direction) using V.29 modulation at 9600 baud.
Some brands of leased line modems are incompatible with other brands.

 Modem−HOWTO

24.2 ISDN "Modems" 85

http://sol.parkland.cc.il.us/sdb/en/html/isdn.html

26. Appendix G: Fax pixels (dots)

Here's some info on the bloated bandwidth required for standard fax including the dot density. You can of
course send a fax via your modem if you dial the real telephone number of the recipient.

A4 paper: 216mm (horizontal) * 297mm (vertical)
normal mode 8dots/mm * 3.85dots/mm
fine mode * 7.7dots/mm
extra fine mode *15.4dots/mm

Each dot is either white or black and thus 1 bit. One sheet of A4 paper using fine mode is (216*8) * (297*7.7)
= about 4 million dots. With a compression ratio of 8:1 it takes about 50 seconds at 9600bps for transmission.

27. Appendix H: Antique Modems

27.1 Introduction

By "antique" I mean modems with speeds of 14.4 kbps or less. Many of them were made in the 1980s. Faster
modems are also included if they use a proprietary protocol. This appendix compares the antique modems
with the modern ones. You should read it if you are interested in modem history or are intending to actually
use an antique modem. Also, many current modems and software still support the old protocols and you might
find that these have been configured by mistake.

27.2 Old CCITT (ITU) and Bell Protocols

Bell 103 300 bps; frequency shift keying = FSK (1962)•
V.21 300 bps; frequency shift keying (used a different frequency than Bell 103) (1964)•
V.23 1200/75 bps and 600/75 bps asymmetric; 75 bps is the reverse channel; frequency shift keying =
FSK (1964)

•

Bell 212A 1200 bps; quadrature differential phase shift keying = QDPSK = DPSK•
V.22 1200 bps; fallback to 600 bps ; QDPSK = DPSK (1980)•
V.22bis 2400 bps; QAM (1984)•
V.32 9600 bps; QAM (1984 but not widely used until years later)•
V.32bis 14400 bps; QAM (1991)•

QAM= Quadrature Amplitude Modulation. The word "Quadrature" is short for "quadrature differential phase
shift keying" =QDPSK

27.3 Historical Overview

Teletypes and dumb terminals

Prior to 1960, 110 bps (0.11) modems were used for teletype machines (like an electric typewriter only much
more noisy). Then in 1960 AT$amp;T came out with a 300 bps modem (for use on it's phone system). Such
slow (and expensive modems) were later mainly used for transmitting data between mainframe computers or
for connecting a dumb terminal to a mainframe computer over phone lines. Many dumb terminals didn't even
have a screen display, but printed on paper what you typed at the keyboard along with responses from the
computer.

 Modem−HOWTO

26. Appendix G: Fax pixels (dots) 86

PCs and BBSs

With the advent of the personal computer (PCs) in the early 1980s, the PC was used like a dumb terminal for
connecting to mainframes. But now files could be transferred and one PC could connect to another.

The 1980s saw the rise of the Bulletin Board System (BBS). This was just a computer with a modem listening
for incoming calls. The public could dial up a BBS with a modem and then downloadable free software,
participate in discussions on various topics, play on−line games, etc. Dialing in to a BBS was something like
an Internet site. Except that to go to another BBS site, you would need to dial another number (and possible
pay long distance telephone charges). Many BBSs would have a monthly charge but some were run by
volunteers and were free. Many companies established BBSs for customers that contained support
information, catalogs, etc. In the early 1990s, BBSs were booming. By the mid 1990s some even offered
Internet connections. For some history of BBSs see Sysops' Corner: History of BBSing

The Internet

Then came the advance of Internet in the mid 1990s which resulted in the demise of the BBSs near the end of
the 1990s. Some BBSs became websites, but when BBSs were dying in droves, websites were quite expensive
so most BBSs just disappeared. Also, the public was unwilling to pay for using websites like they previously
paid for the use of BBSs. There were such a huge number of free websites to visit that subscription BBSs
were no longer competitive.

Modems permitted the public to connect to the Internet. In the 1990s Modems became fast, cheap and widely
used. Then in the late 1990s, faster non−analog "modems" appeared: ISDN, DSL, and cable. The history of
these isn't in this HOWTO.

Speeds

Before V.32 (9600 bps), modems typically had speeds of 300 to 2400 bps. Some super fast ones had much
higher speeds (such as 19.2k bps) and used non−standard protocols. To utilize these "fast" ones, both modems
for a connection needed to support the same proprietary protocol which often meant that they must be the
same brand.

Prior to the V.42 standard for error correction and the V.42bis (1990) standard for data compression, the MNP
standards were usually used for both error correction and data compression. An X.PC error correction
standard was used on some commercial data networks. Compression and error correction were available on
some 2400 bps modems.

>From 1960 to 1980 most modems only had a speed of 300 bps (which was also 300 baud). This is only
0.3kbps. Modern modems are over 100 times faster. Some old−slow modems are still in use so they are not
really "antique" quite yet.

27.4 Proprietary protocols, etc.

These were used in order to obtain higher speeds before more standardized higher speeds became established.
The modem at the other end needs to support the same protocol for this to work. The dates shown below may
be only approximate.

PEP (Packetized Ensemble Protocol 1985): 18k (at best).•

 Modem−HOWTO

PCs and BBSs 87

http://sysopscorner.thebbs.org/bbshist.html

Turbo PEP: 23k 1994?•
Hayes Express 96: 9.6k (Hayes 1987)•
HST: 9.6k (US Robotics 1986)•
HST: 14.4k (US Robotics 1989)•
HST: 16.8k (US Robotics 1992)•
V.32 terbo: 19.2k (AT$amp;T 1993)•
V.FastClass: 28.8k (Rockwell 1993)•
X2 :57.3k (US Robotics 1997)•
K56: Flex 57.3k (Rockwell 1997)•

The PEP used as much bandwidth as feasible by splitting the spectrum into as many as 512 sub−bands. It was
supported by Ven−Tel's Pathfinder and Telebit's Trailblazer.

27.5 Autobauding

This term has a few different meanings. In general it means either the automatic adjustment of
modem−to−modem speed or of modem−to−serial_port speed.

27.6 Modem−to−modem Speed

Modern modems negotiate the modem−to−modem speed and protocol when they first connect to each other
and normally connect to each other at the highest possible speed. If one side can't negotiate, the other side
should accept whatever speed and protocol that the fixed side has available. Except that some modern
modems may no longer support some of the antique protocols. During negotiations, one modem often must
use a lower speed than its maximum in order to connect with the other modem. This is sometimes called
"fallback" since one modem falls back to a lower speed (although it never really used its higher speed
modem−to−modem). This is also called "autobauding" or "automode". Sometimes fallback also happens when
both modems automatically lower their speed due to a noisy line. Register S37 in a modem is normally set to
enable autobauding but may also be set for a fixed modem−to−modem speed in some modems.

Early modems didn't have such autobauding or fallback. If you have such a modem, it will likely work OK if
the other modem you connect to is a modern one that can adjust it's speed and protocol to yours. But a
problem arises if both modems which want to communicate with each other are both antique and don't support
automode. In this case they need to be manually set to the same speed and protocol.

Even when this automode existed, there was sometimes a limited choices of speed (like only 1200/300 bps).
In olden days (and even today), a computer dial−in site might have groups of phone lines, where each group
which had a specific type modem on it which supported specific speeds and protocols. For example, if you
had a 2400 bps Bell 212A modem then you simply only dialed in to certain telephone numbers that supported
that speed and protocol. Once a site obtained modems that could support a wider variety of speeds and
protocols, then there was no need to have different groups of phone lines.

27.7 Modem−to−serial_port Speed

Same speed required

For old modems (mostly under 9600 bps) the modem−to−serial_port speed had to be the same as the
modem−to−modem speed. This was because data flowed straight thru the modem without "speed buffering"
(storing bytes) inside the modem. This meant that both the modem's serial port and the computer's serial port

 Modem−HOWTO

 27.5 Autobauding 88

had to be set to this speed. That is, both ends of the serial cable had to be set for this speed.

One might erroneously reason that if the serial port speed was higher than the modem−to−modem speed, all
would work OK since then there would be no bottleneck in the serial line. This works OK in the direction
from the modem to the PC since a higher speed line can have a lower thruput speed due to time spacing
between bytes. But disaster strikes for the flow from the PC to the modem since it would flow at a speed faster
than the modem could transmit the data. Data would be lost since there is no speed buffering.

Equalizing speed

If a modem had only one modem−to−modem speed (or was set by software or physical switches to only
operate at one speed), then this wasn't a problem since one would just set the PCs serial port for this speed.
Even if the modem had various modem−to−modem speeds which were set by negotiations with the other
modem, there was no problem in setting the modem's serial port speed correctly. It would simply set this port
speed to it's current modem−to−modem speed. Another way make the speeds equal is for the modem to detect
the PC's serial port speed and then set it's modem−to−modem speed the same. This will be explained later.

But setting the computer's serial port to the modem−to−modem speed was a problem since the modem has no
way to directly give commands to the PCs serial port to change it's speed. Only system software can do that.
The modem finds out what speed to use based on negotiations with the other modem and thus the change of
this serial port speed can't be done in advance. How does the modem communicate its chosen
modem−to−modem speed to the system software?

Use "CONNECT" message to set speed

Here's one way to do it. Consider the case of a dial−in modem that others dial into. A getty program will be
used to send login prompt thru the modems to users. Getty will also be the system software that changes the
speed of the serial port and the modem will tell getty what modem−to−modem speed it's using. The modem
will do this by sending getty a "CONNECT" message giving the modem−to−modem speed.

But there's one problem here. How does one insure that the "CONNECT" message, which the modem sends to
getty via the serial port, is sent at the same speed as the PC's serial port? Here's how it's done.

When the modem is first sent an init string, the modem detects the speed of the computer's serial port and sets
it's modem−to−serial_port speed to this value. Now it can communicate with getty. The modem senses the
serial speed by examining the "AT" at the beginning of the string. This is sometimes also called autobauding.
For modern modems, this same modem−to−serial port speed is always retained, even after the modem
connects to another modem and regardless of what the modem−to−modem speed is. But for our old modem
this serial speed needs to be equal the modem−to−modem speed.

So now, for example, getty gets a CONNECT 2400 from the modem and switches the PC's serial port speed to
2400. The modem also switches its serial port speed to 2400. Now both ends of the modem serial cable are at
2400 and there is no speed mismatch. Then getty sends a login prompt out over the phone line thru the
modems. The 2400 bps is now both the modem−to−modem speed and the modem−to−serial_port speed.
Problem solved. Mgetty can do this by configuring it for "autobauding".

For dialing out, the same method is used, but now the communication software must handle it instead of getty.

 Modem−HOWTO

Equalizing speed 89

Setting modem−to−modem speeds by the serial speed

Another way to switch modem−to−modem speed was by using a modem feature where the modem would set
its modem−to−modem speed to be the same as the modem−to−serial port speed it detected. The Bn AT
commands would enable this and determine what protocol to use for each speed. So with this enabled, setting
the serial speed by the computer would also set the modem−to−modem speed to be the same. This should
result in this modem being inflexible in any speed negotiations between the modems.

Manual bauding

Another (but cruder) way to solve the serial speed problem when dialing in to a site was to get the remote site
to change it's modem−to−modem speed to match your serial port speed. It works like this: The person trying
to login over a modem connection doesn't see any login prompt because of a speed mismatch. So the person
trying to login hits a "break" key to send a break signal over the phone line (via modem) to getty on the
remote machine. A break signal will always get through even if there is a speed mismatch in a serial line.

The remote getty gets this break signal and switches the remote's serial port to the next speed as specified in
its getty configuration file. This new remote serial port speed causes the remote modem to switch to the same
modem−to−modem speed as previously configured by the ATB command. Then the local modem would
transmit the login prompt over the local's serial line at this speed. If one doesn't see a login prompt, then they
hit the break key again and a new speed is tried. This continues until the remote getty finally gets the speed
correct (equal to the serial speed set on the local PC) and a login prompt finally displays. Note that PC
keyboards have no "break" key but dumb terminal keyboards did. Mgetty, agetty, and uugetty can do this
obsolete break method and it's called "manual bauding".

Unsupported speeds

In Linux, there's a problem if the speed is set to a speed not supported by Linux's serial port (for example
7200 bps). You may dial out and connect at 7200 bps (both modem−to−modem and modem−to−serial_port
speed) but you only see garbage since Linux doesn't support 7200 on the serial port. Once you connect there is
no simple way to hang up because even the +++ escape sequence can't be sent to the modem over a 7200 baud
interface.

Modern modems, speed buffering

To dial out by the antique method using some modern modems set &Q0 N0 and S17=5 (if you want 1200
bps). Some of the S17 settings vary with the make of modem. S17=0 is the default that connects the modern
way at the highest speed supported.

Modern modems can use almost any serial port speed and it doesn't depend at all on modem−to−modem
speed. To do this they employ speed buffering and flow control. Speed buffering means that modems have
buffers so that there can be a difference between the modem−to−modem speed and the modem−to−serial_port
speed. If the flow entering the modem is faster than the flow exiting it, the excess flow is simply stored in a
buffer in the modem. Then to prevent the buffer from overflowing, the modem sends a flow control signal to
stop the input flow to the modem. This is true for either direction of flow. See Flow Control for more details.

27.8 Before AT Commands

 Modem−HOWTO

Setting modem−to−modem speeds by the serial speed 90

Hayes introduced the AT command set and other modem manufacturers adopted it as a standard. Before the
AT commands, many modems used dip switches to configure the modem. Another command set is the
CCITT V.25bis command set. Some modems supported both CCITT and AT commands. The CCITT V.25bis
also specifies how Synchronous modem−to−serial_port communication is to take place using either the ASCII
or 8−bit EBCDIC character sets.

27.9 Acoustic−Coupling

This is where one connects a modem to a telephone using audio tones that one can hear. The modem contains
a microphone and speaker which "talks" directly into the telephone handset without using any wires. It's
"wireless" in a sense but uses sound waves instead of radio waves. The modem speaker is placed in contact
with the telephone microphone (on the handset) so that the tones from the modem go into the telephone. The
modem microphone, picks up tones from the telephone handset speaker. This scheme is called "acoustic
coupling".

A major problem is that outside noises can interfere and cause errors. The advantage is convenience: There
are no cables to plug in. Most modems that could do this were only 300 baud, but higher speeds were used
too. It's said that 9600 bps didn't work very well using this scheme.

27.10 Data Compression and Error Correction

MNP 2, 3, or 4 were used for error correction. MNP 5 was compression. Modern modems generally use V42
(error correction) and V42bis (compression). Many modems support both MNP and V42.

END OF Modem−HOWTO

 Modem−HOWTO

27.9 Acoustic−Coupling 91

	Table of Contents
	 Modem-HOWTO
	David S.Lawyer mailto:dave@lafn.org
	1. Introduction
	2. Modems for a Linux PC
	3. Modem Pools
	4. Serial Port and Modem Basics
	5. Configuring Overview
	6. Locating the Serial Port: IO address, IRQs
	7. Configuring the Serial Driver (high-level) "stty"
	8. Modem Configuration (excluding serial port)
	9. Serial Port Devices /dev/ttyS2, (or /dev/ttys/2) etc.
	10. Interesting Programs You Should Know About
	11. Trying Out Your Modem (Dialing Out)
	12. Dial-In
	13. Uugetty for Dial-In (from the old Serial-HOWTO)
	14. What Speed Should I Use with My Modem?
	15. Communications Programs And Utilities
	16. Two Modems (Modem Doubling)
	17. Troubleshooting
	18. Flash Upgrades
	19. Other Sources of Information
	20. Appendix A: How Analog Modems Work (technical) (unfinished)
	21. Appendix B: (Reserved for future use)
	22. Appendix C: "baud" vs. "bps"
	23. Appendix D: Terminal Server Connection
	24. Appendix E: Digital Modems: ISDN, DSL, RAS
	25. Appendix F: Leased Line Modems
	26. Appendix G: Fax pixels (dots)
	27. Appendix H: Antique Modems
	1. Introduction
	1.1 DSL, Cable, and ISDN Modems in other HOWTOs
	1.2 Also not covered: PCMCIA Modems, PPP
	1.3 Copyright, Disclaimer, Trademarks, & Credits
	Copyright
	Disclaimer
	Trademarks.
	Credits

	1.4 Contacting the Author
	 1.5 New Versions of this HOWTO
	1.6 New in Recent Versions
	 1.7 What is a Modem ?
	1.8 Does My Computer Contain an Internal Modem ?
	 1.9 Quick Install
	External Modem Install
	Internal Modems (ISA, PCI and AMR)
	Internal Modems: Manual configuration
	ISA Modems: What IOs and IRQs may be used?
	Both PCI and ISA: Use setserial to tell the serial driver
	Use MS Windows to set the BIOS (A last resort method)
	 All Modems

	2. Modems for a Linux PC
	 2.1 External vs. Internal
	2.2 Is a Driver Needed ?
	2.3 External Modems
	PnP External Modems
	Cabling & Installation
	What the Lights (LED's) Mean (for some external modems)

	2.4 Internal Modems
	 2.5 Software-based Modems (winmodems, linmodems)
	Introduction to software modems (winmodems)
	Linmodems
	Linmodem sites and documentation
	Software-based modem types
	Is this modem a software modem?
	Should I get a software modem?

	 2.6 PCI Modems
	2.7 AMR Modems
	 2.8 USB Modems
	 2.9 Which Internal Modems might not work with Linux
	 MWave and some DSP Modems
	 Rockwell (RPI) Drivers

	3. Modem Pools
	3.1 Introduction
	3.2 Analog Modem Pools, Multi-modem Cards
	 3.3 Digital Modems, RAS
	 4. Serial Port and Modem Basics
	4.1 Modem Converts Digital to Analog (and conversely)
	4.2 What is a Serial Port ?
	Intro to Serial
	Pins and Wires
	Internal Modem Contains Serial Port

	4.3 IO Address & IRQ
	4.4 Names: ttyS0, ttyS1, etc.
	 4.5 Interrupts
	4.6 Data Compression (by the Modem)
	4.7 Error Correction
	4.8 Data Flow (Speeds)
	 4.9 Flow Control
	Example of Flow Control
	Hardware vs. Software Flow Control
	Symptoms of No Flow Control
	 Modem-to-Modem Flow Control

	4.10 Data Flow Path; Buffers
	4.11 Modem Commands
	4.12 Serial Driver Module
	5. Configuring Overview
	 6. Locating the Serial Port: IO address, IRQs
	6.1 IO & IRQ Overview
	 6.2 PCI Bus Support
	Introduction
	More info on PCI

	6.3 Common mistakes made re low-level configuring
	 6.4 IRQ & IO Address Must be Correct
	6.5 What is the IO Address and IRQ per the driver ?
	Introduction
	 I/O Address & IRQ: Boot-time messages
	 The /proc directory and setserial

	 6.6 What is the IO Address & IRQ of my Serial Port Hardware?
	Introduction
	 PCI: What IOs and IRQs have been set?
	 PCI: Enabling a disabled port
	 ISA PnP ports
	Finding a port that is not disabled (ISA, PCI, PnP, non-PnP)
	Exploring via MS Windows (a last resort)

	 6.7 Choosing Serial IRQs
	IRQ 0 is not an IRQ
	 Interrupt sharing, Kernels 2.2+
	What IRQs to choose?

	 6.8 Choosing Addresses --Video card conflict with ttyS3
	 6.9 Set IO Address & IRQ in the hardware (mostly for PnP)
	 Using a PnP BIOS to I0-IRQ Configure

	6.10 Giving the IRQ and IO Address to Setserial
	 7. Configuring the Serial Driver (high-level) "stty"
	7.1 Introduction
	7.2 Hardware flow control (RTS/CTS)
	7.3 Speed Settings
	7.4 Ignore CD Setting: clocal
	 7.5 What is stty ?
	 8. Modem Configuration (excluding serial port)
	8.1 Finding Your Modem
	8.2 AT Commands
	 8.3 Init Strings: Saving and Recalling
	Where is my "init string" so I can modify it ?

	 8.4 Other AT Modem Commands
	8.5 Blacklisting
	8.6 What AT Commands are Now Set in my Modem?
	8.7 Modem States (or Modes)
	 9. Serial Port Devices /dev/ttyS2, (or /dev/ttys/2) etc.
	9.1 Devfs (The new Device File System)
	 9.2 Serial Port Device Names & Numbers
	9.3 USB (Universal Serial Bus) Ports
	9.4 Link ttySN to /dev/modem
	 9.5 cua Device Obsolete
	10. Interesting Programs You Should Know About
	 10.1 What is setserial ?
	Introduction
	 Probing
	 Boot-time Configuration
	 Configuration Scripts/Files
	 Edit a script (required prior to version 2.15)
	 New configuration method using /etc/serial.conf
	IRQs
	 Laptops: PCMCIA

	10.2 What is isapnp ?
	 10.3 What is wvdialconf ?
	 11. Trying Out Your Modem (Dialing Out)
	11.1 Are You Ready to Dial Out ?
	 11.2 Dialing Out with wvdial
	 11.3 Dialing Out with Minicom
	 11.4 Dialing Out with Kermit
	 12. Dial-In
	12.1 Dial-In Overview
	12.2 What Happens when Someone Dials In ?
	12.3 56k Doesn't Work for Dialin
	 12.4 Getty
	Introduction to Getty
	How getty respawns
	 About mgetty
	 About uugetty
	 About getty_em
	 About agetty
	About mingetty, and fbgetty

	12.5 Why "Manual" Answer is Best
	 12.6 Dialing Out while Waiting for an Incoming Call
	12.7 Ending a Dial-in Call
	Caller logs out
	When DTR drops (is negated)
	 Caller hangs up

	 12.8 Dial-in Modem Configuration
	12.9 Callback
	 12.10 Voice Mail
	 12.11 Simple Manual Dial-In
	12.12 Complex GUI Dial-In, VNC
	12.13 Interoperability with MS Windows
	 13. Uugetty for Dial-In (from the old Serial-HOWTO)
	13.1 Installing getty_ps
	13.2 Setting up uugetty
	Modern Modems
	Old slow modems
	Login Banner

	13.3 Customizing uugetty
	 14. What Speed Should I Use with My Modem?
	14.1 Speed and Data Compression
	14.2 Where do I Set Speed ?
	 14.3 Can't Set a High Enough Speed
	Speeds over 115.2k
	 How speed is set in hardware: the divisor and baud_base
	Setting the divisor, speed accounting
	Crystal frequency is higher than baud_base

	 14.4 Speed Table
	 15. Communications Programs And Utilities
	15.1 Minicom vs. Kermit
	15.2 List of Communication Software
	Least Popular Dialout
	Most Popular Dialout
	 Fax
	 Voicemail Software
	Dial-in (uses getty)
	Other

	 15.3 SLiRP and term
	15.4 MS Windows
	16. Two Modems (Modem Doubling)
	16.1 Introduction
	16.2 Modem Bonding
	EQL
	Multilink

	 17. Troubleshooting
	 17.1 My Modem is Physically There but Can't be Found
	 No response to AT

	17.2 "Modem is busy"
	 17.3 "You are already online! Hang up first." (from minicom)
	17.4 I can't get near 56k on my 56k modem
	17.5 Uploading (downloading) files is broken/slow
	17.6 For Dial-in I Keep Getting "line NNN of inittab invalid"
	17.7 I Keep Getting: ``Id "S3" respawning too fast: disabled for 5 minutes''
	17.8 My Modem is Hosed after Someone Hangs Up, or uugetty doesn't respawn
	17.9 NO DIALTONE
	17.10 NO CARRIER
	 17.11 uugetty Still Doesn't Work
	17.12 (The following subsections are in both the Serial and Modem HOWTOs)
	 17.13 My Serial Port is Physically There but Can't be Found
	 17.14 Extremely Slow: Text appears on the screen slowly after long delays
	17.15 Somewhat Slow: I expected it to be a few times faster
	 17.16 The Startup Screen Show Wrong IRQs for the Serial Ports.
	17.17 "Cannot open /dev/ttyS?: Permission denied"
	17.18 "Operation not supported by device" for ttyS?
	17.19 "Cannot create lockfile. Sorry"
	17.20 "Device /dev/ttyS? is locked."
	 17.21 "/dev/tty? Device or resource busy"
	17.22 "Input/output error" from setserial, stty, pppd, etc.
	17.23 "LSR safety check engaged"
	17.24 Overrun errors on serial port
	17.25 Modem doesn't pick up incoming calls
	17.26 Port get characters only sporadically
	17.27 Troubleshooting Tools
	18. Flash Upgrades
	19. Other Sources of Information
	19.1 Misc
	19.2 Books
	19.3 HOWTOs
	19.4 Usenet newsgroups
	 19.5 Web Sites
	 20. Appendix A: How Analog Modems Work (technical) (unfinished)
	 20.1 Modulation Details
	Intro to Modulation
	Frequency Modulation
	Amplitude Modulation
	Phase Modulation
	Combination Modulation

	 20.2 56k Modems (V.90, V.92)
	20.3 Full Duplex on One Circuit
	20.4 Echo Cancellation
	21. Appendix B: (Reserved for future use)
	22. Appendix C: "baud" vs. "bps"
	22.1 A simple example
	22.2 Real examples
	23. Appendix D: Terminal Server Connection
	 24. Appendix E: Digital Modems: ISDN, DSL, RAS
	24.1 Introduction
	24.2 ISDN "Modems"
	24.3 Digital Subscriber Line (DSL)
	24.4 56k Digital-Modems
	25. Appendix F: Leased Line Modems
	26. Appendix G: Fax pixels (dots)
	27. Appendix H: Antique Modems
	27.1 Introduction
	27.2 Old CCITT (ITU) and Bell Protocols
	27.3 Historical Overview
	Teletypes and dumb terminals
	PCs and BBSs
	The Internet
	Speeds

	27.4 Proprietary protocols, etc.
	 27.5 Autobauding
	27.6 Modem-to-modem Speed
	27.7 Modem-to-serial_port Speed
	Same speed required
	Equalizing speed
	Use "CONNECT" message to set speed
	Setting modem-to-modem speeds by the serial speed
	Manual bauding
	Unsupported speeds
	Modern modems, speed buffering

	27.8 Before AT Commands
	27.9 Acoustic-Coupling
	27.10 Data Compression and Error Correction

