XML-RPC HOWTO

Eric Kidd

Source Builders

eric.kidd@pobox.com

Copyright © 2001 by Eric Kidd

0.5, 2001-01-23

Describes how to use XML-RPC to implement clients and servers in a variety of languages. Provides

example code in Perl, Python, C, C++, Java and PHP. Includes sections on Zope and KDE 2.0. Applies to a
operating systems with XML-RPC support.

XML-RPC HOWTO

Table of Contents

2.2.5UpPOEMAIATYPES ...co i 2
2.3. The History Of XIML=RPC..... ..ottt e e e bt e b e st b s s s s s s s s s s s s ssssnsssnsssesneneeees 3

3. XML=RPC VS.Other PrOtOCOIS.cceuteieeiiei ettt e e e e e et e e s e et e e s e et e e e eeaaa e e s e abaeeeeeaaansas 4
3.1.XML-RPCvs.CORBA
3.2 XML=RPC VS, DCOM....cooutuuuiiiiieeieee et e e ettt e e e e e e e et et eeeeeeeeeeeeaeat s eeesssseessssaeseeeeassaenees 4
3.3 XMLRPC VS, SOAP. ... et e e e ettt e e e e e e et e e e e e e e e e e e e et eaeeaaaes 4

4. SampleAPL: SUMANADIIEIENCEuuuiiiiiiiiiiititi ettt et e e e e e et e e e e et e e e e e e e e e e e e e aaaeeaeeaaaaaaeaaaaaaaaaaas 5

5. USINGXML=RPC WIth PEIL... ..t e s ee s e e s e e e seesseesaeeeeeeeeeeeeeeeaeeeeeaaeeees 6
LT N =Y [O [T=Y o T PTRRPT €

oIV ANES) 1= 1010 ey A (0] A1 ma = IS <Y AV < UPTT TP 6
ORI AN O €1 L S TY Y0 LY 1 ST /=) SRR 7

7.USINgXML=RPC With C aNA Ci..iiiiiiiiiiiiiiiiiiiiieeieee ettt 10
I N O O [=Y | SRR 10

A N O s O 1<) 51 PR 1]
RN N O 1 L S TY o GRS Y/ ST 12

8. USINGXML=RPC WIth JAVA......uuuuiiiiiiiiiiiiieiieiieieieee ettt ettt ettt et e e e et e e e e e e e e e e e et e e et e e e e e e e e e e e e e e e aaeaaaeeaaaaaaaaaaaaaens 14
T NN o V72 (O [1<Y o TP 14

8.2. A StANU = AlONEIAVAS EIVEN ... eveeee et e et et et e et e et e et e et e e e e e e ree e eeeaarenreenarennas 15

9. USINGXML=RPC WIth PHP.......oiiiiiiiiiiiiiiii et e e e e 16
9.1.A PHPClient

L N md | S Y= VY 17

10. Applications with Built=in XML=RPC SUPPOIL..........cceitiiiieiiiieieei i ceeiee e eee s anaeaneeanees 18

O T 4 o T 1
O 0] 2 O P 1

N o Yo T L A I aTE B o Yo W10 1)) AT 1¢
11.1.New VersionSof ThiS DOCUIMIEIL.cuuu ettt et e e e ettt e e et e e e e et e e e e e e ea e eea e e eetereeanaeennareennrees 19

11.2. SUbMItiNGOLNEISNIPPELS. ..ceveiiieei e 19

1. Legal Notice

Permission is granted to copy, distribute and/or modify this document under the termgNfiteee
Documentation License, Version 1.1 or any later version published by the Free Software Foundation with nc
Invariant Sections, no Front—-Cover Texts, and no Back—Cover Texts. You may obtain a copy of the GNU
Free Documentation Licendeom the Free Software Foundation by visitthgir Web site or by writing to:

Free Software Foundation, Inc., 59 Temple Place — Suite 330, Boston, MA 02111-1307, USA.

This manual contains short example programs ("the Software"). Permission is hereby granted, free of charg
to any person obtaining a copy of the Software, to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
condition:

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1. Legal Notice 1

http://www.fsf.org/copyleft/fdl.html
http://www.fsf.org/copyleft/fdl.html
http://www.fsf.org/copyleft/fdl.html
http://www.fsf.org/
http://www.fsf.org/

2. What is XML-RPC?

XML-RPC is a simple, portable way to make remote procedure calls over HTTP. It can be used with Perl,
Java, Python, C, C++, PHP and many other programming languages. Implementations are available for Uni
Windows and the Macintosh.

Here's a short XML-RPC client written in Perl. (We use Ken MaclLeod's Frontier::Client module.)

use Frontier::Client;

$server = Frontier::Client—>new(url => 'http://betty.userland.com/RPC2");
$name = $server—>call('examples.getStateName', 41);

print "$name\n";

When run, this program will connect to the remote server, get the state name, and print it. (State #41 should
be South Dakota in this example.)

Here's the same program in Python. (This time, we use Fredrik Lundh's xmirpclib.)

python> import xmlrpclib

python> server = xmlrpclib.Server("http://betty.userland.com/RPC2")
python> server.examples.getStateName(41)

‘South Dakota'

In the following chapters, you'll learn how to write XML-RPC clients and servers in a variety of
programming languages.

2.1. How it Works

XML-RPC is described fully in Dave Wineudficial specification. If you're curious, go ahead and take a
look it's a quick and straight—forward read.

On the wire, XML—RPC values are encoded as XML:

<methodCall>
<methodName>sample.sumAndDifference</methodName>
<params>
<param><value><int>5</int></value></param>
<param><value><int>3</int></value></param>
</params>
</methodCall>

This is verbose, but compresses readily. It's also faster than you might expect according to measurements t
Rick Blair, a round-trip XML-RPC call takes 3 milliseconds using Hannes Wallnéfer's Java implementation.

2.2. Supported Data Types

XML-RPC supports the following data types:
int

2. What is XML-RPC? 2

http://www.xmlrpc.com/
http://bitsko.slc.ut.us/~ken/xml-rpc/
http://www.pythonware.com/products/xmlrpc/
http://www.xmlrpc.com/spec

XML-RPC HOWTO

A signed, 32-bit integer.
string

An ASCII string, which may contain NULL bytes. (Actually, several XML-RPC implementations
support Unicode, thanks to the underlying features of XML.)

boolean

Either true or false.
double

A double—precision floating point number. (Accuracy may be limited in some implementations.)
dateTime.iso8601

A date and time. Unfortunately, since XML-RPC forbids the use of timezones, this is very nearly
useless.

base64

Raw binary data of any length; encoded using Base64 on the wire. Very useful. (Some
implementations don't like to receive zero bytes of data, though.)

array
An one—dimensional array of values. Individual values may be of any type.
struct

A collection of key—-value pairs. The keys are strings; the values may be of any type.

2.3. The History of XML-RPC

XML-RPC was inspired by two earlier protocols. The first is an anonymous RPC protocol designed by Dave
Winer and announced in atd DaveNet essay. (This is why XML-RPC servers are often installed under
/RPC2.) The other, more important inspiration was an early draft of the SOAP protocol.

A longerhistory of XML-RPC has been generously provided by Dave Winer. This also explains the
relationship between XML-RPC and SOAP.

2.3. The History of XML-RPC 3

http://davenet.userland.com/1998/02/27/rpcOverHttpViaXml
http://davenet.userland.com/1998/02/27/rpcOverHttpViaXml
http://davenet.userland.com/1998/02/27/rpcOverHttpViaXml
http://www.xmlrpc.com/stories/storyReader$555

3. XML-RPC vs. Other Protocols

XML-RPC is not the only way to make remote procedure calls. Other popular protocols include CORBA,
DCOM and SOAP. Each of these protocols has advantages and disadvantages.

The opinions in the section are obviously biased; please take them with a grain of salt.

3.1. XML-RPC vs. CORBA

CORBA is a popular protocol for writing distributed, object-oriented applications. It's typically used in
multi-tier enterprise applications. Recently, it's also been adopted by the Gnome project for interapplication
communication.

CORBA is well-supported by many vendors and several free software projects. CORBA works well with
Java and C++, and is available for many other languages. CORBA also provides an excellent interface
definition language (IDL), allowing you to define readable, object-oriented APIs.

Unfortunately, CORBA is very complex. It has a steep learning curve, requires significant effort to
implement, and requires fairly sophisticated clients. It's better—suited to enterprise and desktop applications
than it is to distributed web applications.

3.2. XML-RPC vs. DCOM

DCOM is Microsoft's answer to CORBA. It's great if you're already using COM components, and you don't
need to talk to non—Microsoft systems. Otherwise, it won't help you very much.

3.3. XML-RPC vs. SOAP

SOAP is very similar to XML-RPC. It, too, works by marshaling procedure calls over HTTP as XML
documents. Unfortunately, SOAP appears to be suffering from specification creep.

SOAP was originally created as a collaboration between UserLand, DevelopMentor and Microsoft. The
initial public release was basically XML-RPC with namespaces and longer element names. Since then,
however, SOAP has been turned over a W3C working group.

Unfortunately, the working group has been adding a laundry-list of strange features to SOAP. As of the
current writing, SOAP supports XML Schemas, enumerations, strange hybrids of structs and arrays, and
custom types. At the same time, several aspects of SOAP are implementation defined.

Basically, if you like XML-RPC, but wish the protocol had more features, check out SOAP. :-)

3. XML-RPC vs. Other Protocols 4

http://www.corba.org/
http://www.gnome.org/
http://www.microsoft.com/com/tech/DCOM.asp
http://www.w3.org/TR/SOAP/

4. Sample API: sumAndDifference

To demonstrate XML-RPC, we implement the following API in as many languages as possible.
struct sample.sumAndDifference (int X, int y)

This function takes two integers as arguments, and returns an XML-RPC <struct> containing two
elements:

sum
The sum of the two integers.
difference
The difference between the two integers.
It's not very useful, but it makes a nice example. :-)
This function (and others) are available using the URL

http://xmlrpc—c.sourceforge.net/api/sample.php. (This URL won't do anything in a
browser; it requires a PHP client.)

4. Sample API: sumAndDifference

5. Using XML-RPC with Perl

Ken MacLeod has implemented XML-RPC for Perl. You can find his Frontier::RPC module at his
websiteor through CPAN.

To install Frontier::RPC, download the package and compile it in the standard fashion:

bash$ gunzip —c Frontier—-RPC-0.07b1.tar.gz | tar xvf —
bash$ cd Frontier—-RPC-0.07b1

bash$ perl Makefile.PL

bash$ make

bash$ make test

bash$ su —c 'make install'

(The process will be slightly different on Windows systems, or if you don't have root access. Consult your
Perl documentation for details.)

5.1. A Perl Client

The following program shows how to call an XML-RPC server from Perl:

use Frontier::Client;

Make an object to represent the XML-RPC server.
$server_url = 'http://xmlirpc—c.sourceforge.net/api/sample.php’;
$server = Frontier::Client—>new(url => $server_url);

Call the remote server and get our result.

$result = $server—>call('sample.sumAndDifference’, 5, 3);
$sum = $result—>{'sum’};

$difference = $result->{'difference’};

print "Sum: $sum, Difference: $difference\n”;

5.2. A Stand—-Alone Perl Server

The following program shows how to write an XML-RPC server in Perl:

use Frontier::Daemon;

sub sumAndDifference {
my ($x, $y) = @_;
return {'sum' => $x + Py, 'difference’' => $x — Sy};

}

Call me as http://localhost:8080/RPC2

$methods = {'sample.sumAndDifference' => \38;sumAndDifference};

Frontier::Daemon—>new(LocalPort => 8080, methods => $methods)
or die "Couldn't start HTTP server: $!";

5. Using XML-RPC with Perl 6

http://bitsko.slc.ut.us/~ken/xml-rpc/
http://www.cpan.org/

XML-RPC HOWTO

5.3. A CGIl-Based Perl Server

Frontier::RPC2 doesn't provide built—in support for CGl-based servers. It does, however, provide most
of the pieces you'll need.

Save the following code as sumAndDifference.cgi in your web server's cgi—bin directory. (On Unix
systems, you'll need to make it executable by typing chmod +x sumAndDifference.cgi.)

#!/usr/bin/perl —w

use strict;
use Frontier::RPC2;

sub sumAndDifference {
my ($x, $y) = @_;
return {'sum' => $x + $y, 'difference' => $x — $y};

}

process_cgi_call({'sample.sumAndDifference' => \38;sumAndDifference});

CGI Support

Simple CGI support for Frontier::RPC2. You can copy this into your CGI
scripts verbatim, or you can package it into a library.
(Based on xmlrpc_cgi.c by Eric Kidd <http://xmlrpc—c.sourceforge.net/>.)

Process a CGl call.
sub process_cgi_call ($) {
my ($methods) = @_;

Get our CGI request information.

my $method = SENV{'REQUEST_METHOD};
my $type = SENV{'CONTENT_TYPE};

my $length = SENV{'CONTENT_LENGTHY;

Perform some sanity checks.

http_error(405, "Method Not Allowed") unless $method eq "POST";
http_error(400, "Bad Request") unless $type eq "text/xml";
http_error(411, "Length Required") unless $length > 0;

Fetch our body.

my $body;

my $count = read STDIN, $body, $length;

http_error(400, "Bad Request") unless $count == $length;

Serve our request.
my $coder = Frontier::RPC2->new;
send_xml($coder—>serve($body, $methods));

}

Send an HTTP error and exit.
sub http_error ($9) {
my ($code, $message) = @_;
print <<"EOD";
Status: $code $message
Content-type: text/htmi

5.3. A CGIl-Based Perl Server 7

XML-RPC HOWTO

<title>$code $message</title>
<h1>$code $message</h1l>
<p>Unexpected error processing XML-RPC request.</p>
EOD
exit 0;

}

Send an XML document (but don't exit).
sub send_xml ($) {
my ($xml_string) = @_;
my $length = length($xml_string);
print <<"EOD";
Status: 200 OK
Content-type: text/xml
Content-length: $length

EOD
We want precise control over whitespace here.
print $xml_string;

}

You can copy the utility routines into your own CGI scripts.

5.3. A CGIl-Based Perl Server

6. Using XML-RPC with Python

Fredrik Lundh has provided an excellegiL—RPC library for Python.

To install, download the latest version. You can either stick the *.py files in the same directory as your
Python code, or you can install them in your system's Python directory.

RedHat 6.2 users can type the following:

bash$ mkdir xmirpclib—0.9.8

bash$ cd xmirpclib—0.9.8

bash$ unzip ../xmlrpc—0.9.8-990621.zip
bash$ python

python> import xmlrpclib

python> import xmlrpcserver

python> Control-D

bash$ su —c ‘cp *.py *.pyc /usr/lib/python1.5/'

We import two of the *.py files to trick Python into compiling them. Users of other platforms should
consult their Python documentation.

For more Python examples, see the aridl.—RPC: It Works Both Ways on the O'Reilly Network.

6.1. A Python Client

The following program shows how to call an XML-RPC server from Python:

import xmirpclib

Create an object to represent our server.
server_url = 'http://xmlrpc—c.sourceforge.net/api/sample.php’;
server = xmlrpclib.Server(server_url);

Call the server and get our result.

result = server.sample.sumAndDifference(5, 3)
print "Sum:", result['sum’]

print "Difference:", result['difference’]

6. Using XML-RPC with Python 9

http://www.pythonware.com/products/xmlrpc/
http://www.oreillynet.com/pub/a/python/2001/01/17/xmlrpcserver.html
http://www.oreillynet.com/pub/a/python/2001/01/17/xmlrpcserver.html

7. Using XML-RPC with C and C++

To get a copy of XML-RPC for C/C++, see thalrpc—c website.

You can either download everything in RPM format, or you can build it from source.

7.1. A C Client

Save the following code in a file called getSumAndDifference.c:

#include <stdio.h>
#include <xmirpc.h>
#include <xmlrpc_client.h>

#define NAME "XML-RPC getSumAndDifference C Client"
#define VERSION "0.1"
#define SERVER_URL "http://xmirpc—c.sourceforge.net/api/sample.php”

void die_if_fault_occurred (xmlrpc_env *env)

/* Check our error—handling environment for an XML-RPC fault. */
if (env—>fault_occurred) {
fprintf(stderr, "XML-RPC Fault: %s (%d)\n",
env—>fault_string, env—>fault_code);
exit(1);
}
}

int main (int argc, char** argv)
xmlrpc_env env;
xmirpc_value *result;
xmlrpc_int32 sum, difference;

/* Start up our XML-RPC client library. */
xmirpc_client_initt)XMLRPC_CLIENT_NO_FLAGS, NAME, VERSION);
xmlrpc_env_init(38;env);

/* Call our XML-RPC server. */

result = xmlrpc_client_call(38;env, SERVER_URL,
"sample.sumAndDifference”, "(ii)",
(xmlrpc_int32) 5,
(xmlrpc_int32) 3);

die_if fault_occurred(38;env);

/* Parse our result value. */
xmirpc_parse_value(38;env, result, "{s:i,s:i,*}",
"sum", 38;sum,
"difference", 38;difference);
die_if fault_occurred(38;env);

/* Print out our sum and difference. */
printf("Sum: %d, Difference: %d\n", (int) sum, (int) difference);

/* Dispose of our result value. */
xmirpc_DECREF(result);

7. Using XML-RPC with C and C++

10

http://xmlrpc-c.sourceforge.net

XML-RPC HOWTO

[* Shutdown our XML-RPC client library. */
xmlrpc_env_clean(38;env);
xmlrpc_client_cleanup();

return O;

}
To compile it, you can type:

bash$ CLIENT_CFLAGS="xmlrpc—c—config libwww-client ——cflags’
bash$ CLIENT_LIBS="xmlrpc—c—config libwww-client ——libs’
bash$ gcc $CLIENT_CFLAGS -o getSumAndDifference getSumAndDifference.c $CLIENT_LIBS

You may need to replace gcc with the name of your system's C compiler.

7.2. A C++ Client

Save the following code in a file called getSumAndDifference2.cc:

#include <iostream.h>
#include <XmIRpcCpp.h>

#define NAME "XML-RPC getSumAndDifference C++ Client"
#define VERSION "0.1"
#define SERVER_URL "http://xmirpc—c.sourceforge.net/api/sample.php”

static void get_sum_and_difference () {

/I Build our parameter array.

XmlIRpcValue param_array = XmIRpcValue::makeArray();
param_array.arrayAppendltem(XmIRpcValue::makelnt(5));
param_array.arrayAppendltem(XmIRpcValue::makelnt(3));

/I Create an object to resprent the server, and make our call.
XmIRpcClient server (SERVER_URL);
XmlIRpcValue result = server.call("sample.sumAndDifference", param_array);

/I Extract the sum and difference from our struct.
XmlIRpcValue::int32 sum = result.structGetValue("sum™).getint();
XmlIRpcValue::int32 diff = result.structGetValue("difference").getint();

cout << "Sum: " << sum << ", Difference: " << diff << endl;

}
int main (int argc, char **argv) {

/I Start up our client library.
XmIRpcClient::Initialize(NAME, VERSION);

/I Call our client routine, and watch out for faults.
try {
get_sum_and_difference();
} catch (XmIRpcFault38; fault) {
cerr << argv[0] << ": XML-RPC fault #" << fault.getFaultCode()
<< " " << fault.getFaultString() << endl;
XmIRpcClient::Terminate();
exit(1);

7.2. A C++ Client

11

XML-RPC HOWTO

}

/I Shut down our client library.
XmIRpcClient::Terminate();
return 0;

}
To compile it, you can type:

bash$ CLIENT_CFLAGS="xmlrpc—c—config c++ libwww—client ——cflags®
bash$ CLIENT_LIBS="xmlrpc—c—config c++ libwww-client —-libs
bash$ c++ $CLIENT_CFLAGS -0 getSumAndDifference2 getSumAndDifference2.cc $CLIENT_LIBS

You'll need a reasonably modern C++ compiler for this to work.

7.3. A CGl-Based C Server

Save the following code in a file called sumAndDifference.c:

#include <xmirpc.h>
#include <xmlrpc_cgi.h>

xmlrpc_value *
sumAndDifference (xmlrpc_env *env, xmirpc_value *param_array, void *user_data)

{
xmirpc_int32 X, y;

[* Parse our argument array. */
xmlrpc_parse_value(env, param_array, "(ii)", 38;x, 38;y);
if (env—>fault_occurred)

return NULL;

/* Return our result. */

return xmlrpc_build_value(env, "{s:i,s:i}",
"sum", X +y,
"difference”, x - y);

}

int main (int argc, char **argv)

{
/* Set up our CGl library. */

xmlrpc_cgi_init(XMLRPC_CGI_NO_FLAGS);

/* Install our only method. */
xmirpc_cgi_add_method("sample.sumAndDifference”, 38;sumAndDifference, NULL);

/* Call the appropriate method. */
xmirpc_cgi_process_call();

/* Clean up our CGl library. */

xmlrpc_cgi_cleanup();

}
To compile it, you can type:

bash$ CGI_CFLAGS="xmlrpc—c-config cgi-server ——cflags’
bash$ CGI_LIBS="xmlrpc—c—config cgi—server ——libs

7.3. A CGIl-Based C Server

12

XML-RPC HOWTO

bash$ gcc $CGI_CFLAGS -o sumAndDifference.cgi sumAndDifference.c $CGI_LIBS

Once this is done, copy sumAndDifference.cgi into your webserver's cgi—bin directory.

7.3. A CGIl-Based C Server

13

8. Using XML-RPC with Java

Hannes Wallnéfer has provided excellent implementation of XML-RPC for Java.

To install it, download the distribution, unzip it, and add the * jar files to your CLASSPATH. On a Unix
system, you can do this by typing:

bash$ unzip xmirpc-java.zip
bash$ cd xmirpc—java/lib
bash$ CLASSPATH="pwd /openxml-1.2.jar: pwd /xmlrpc.jar:$CLASSPATH

8.1. A Java Client

Save the following program in a file named JavaClient.java.

import java.util.Vector;
import java.util. Hashtable;
import helma.xmlrpc.*;

public class JavaClient {

/I The location of our server.
private final static String server_url =
"http://xmlirpc—c.sourceforge.net/api/sample.php”;

public static void main (String [] args) {
try {

/I Create an object to represent our server.
XmIRpcClient server = new XmIRpcClient(server_url);

// Build our parameter list.

Vector params = new Vector();
params.addElement(new Integer(5));
params.addElement(new Integer(3));

/I Call the server, and get our result.
Hashtable result =
(Hashtable) server.execute("sample.sumAndDifference”, params);
int sum = ((Integer) result.get("sum™)).intValue();
int difference = ((Integer) result.get("difference")).intValue();

/Il Print out our result.

System.out.printin("Sum: " + Integer.toString(sum) +
" Difference: " +
Integer.toString(difference));

} catch (XmIRpcException exception) {
System.err.printin("JavaClient: XML-RPC Fault #" +
Integer.toString(exception.code) + ": " +
exception.toString());
} catch (Exception exception) {
System.err.printin("JavaClient: " + exception.toString());
}
}
}

8. Using XML-RPC with Java 14

http://helma.at/hannes/xmlrpc/

XML-RPC HOWTO

8.2. A Stand—Alone Java Server

Save the following program in a file named JavaServer.java.

import java.util. Hashtable;
import helma.xmlrpc.*;

public class JavaServer {

public JavaServer () {
/I Our handler is a regular Java object. It can have a
/I constructor and member variables in the ordinary fashion.
/I Public methods will be exposed to XML-RPC clients.

}

public Hashtable sumAndDifference (int x, int y) {
Hashtable result = new Hashtable();
result.put("sum"”, new Integer(x + y));
result.put("difference”, new Integer(x - y));
return result;

}

public static void main (String [] args) {
try {

/I Invoke me as <http://localhost:8080/RPC2>.
WebServer server = new WebServer(8080);
server.addHandler("sample”, new JavaServer());

} catch (Exception exception) {
System.err.printin("JavaServer: " + exception.toString());

}

8.2. A Stand—Alone Java Server

15

9. Using XML-RPC with PHP

Edd Dumbill has implemented XML-RPC for PHP. You can download it fronifiedulinc XML-RPC
website.

To install the distribution, decompress it and copy xmirpc.inc and xmlrpcs.inc into the same
directory as your PHP scripts.

9.1. A PHP Client

The following script shows how to embed XML-RPC calls into a web page.

<htmlI>

<head>

<titte>XML-RPC PHP Demo</title>
</head>

<body>

<h1>XML-RPC PHP Demo</h1>

<?php
include 'xmirpc.inc';

/I Make an object to represent our server.
$server = new xmirpc_client('/api/sample.php’,
'xmlrpc—c.sourceforge.net', 80);

/I Send a message to the server.
$message = new xmlrpcmsg(‘sample.sumAndDifference’,
array(new xmlrpcval(5, ‘int’),
new xmlrpcval(3, 'int')));
$result = $server—->send($message);

/I Process the response.
if (1$result) {
print "<p>Could not connect to HTTP server.</p>";
} elseif ($result—>faultCode()) {
print "<p>XML-RPC Fault #" . $result—>faultCode() . ": "
$result—>faultString();
}else {
$struct = $result—>value();
$sumval = $struct—>structmem('sum’);
$sum = $sumval—>scalarval();
$differenceval = $struct—>structmem('difference’);
$difference = $differenceval—->scalarval();
print "<p>Sum: " . htmlentities($sum) .
", Difference: " . htmlentities($difference) . "</p>";
}

?>

</body></html>

If your webserver doesn't run PHP scripts, sedtiB website for more information.

9. Using XML-RPC with PHP

http://xmlrpc.usefulinc.com/
http://xmlrpc.usefulinc.com/
http://www.php.net/

XML-RPC HOWTO

9.2. A PHP Server

The following script shows how to implement an XML-RPC server using PHP.

<?php
include 'xmirpc.inc';
include 'xmlirpcs.inc';

function sumAndDifference ($params) {

/[Parse our parameters.
$xval = $params—>getParam(0);
$x = $xval—->scalarval();
$yval = $params—>getParam(1);
$y = $yval->scalarval();

/I Build our response.

$struct = array('sum' => new xmlrpcval($x + $y, 'int),
‘difference’ => new xmirpcval($x — $y, 'int"));

return new xmlrpcresp(new xmlrpcval($struct, 'struct’));

}

/I Declare our signature and provide some documentation.
/I (The PHP server supports remote introspection. Nifty!)
$sumAndDifference_sig = array(array('struct’, 'int', 'int));
$sumAndDifference_doc = 'Add and subtract two numbers';

new xmlrpc_server(array(‘'sample.sumAndDifference’ =>
array(‘function' => 'sumAndDifference’,
'signature' => $sumAndDifference_sig,

'docstring' => $sumAndDifference_doc)));
?>

You would normally invoke this as something like
http://localhost/path/sumAndDifference.php.

9.2. A PHP Server

10. Applications with Built—-in XML-RPC Support

Several popular Linux applications include support for XML-RPC. These have already been described
elsewhere, so we mostly provide pointers to articles.

10.1. Zope

Articles on using XML-RPC with Zope are available elsewhere on the web:

« XML=-RPC Programming with Zope by Jon Udell
e Zope XML-RPC at UserLand.Com

10.2. KDE 2.0

KDE 2.0 includes Kurt Ganrothiscmlrpc daemon, which allows you to script KDE applications using
XML-RPC.

Here's a shogample application in Python. It shows you how to connect to kxmlrpc, manipulate your KDE
address book, and query the KDE trader.

If you have any other articles or example code, pleas8esgi®n 11.2. We'd like to have more information
on scripting KDE.

10. Applications with Built-in XML-RPC Support 18

http://www.byte.com/column/BYT19991021S0014
http://www.byte.com/column/BYT19991021S0014
http://linux.userland.com/stories/storyReader$18
http://kdecvs.stud.fh-heilbronn.de/cvsweb/kdebase/kxmlrpc/
http://kdecvs.stud.fh-heilbronn.de/cvsweb/kdebase/kxmlrpc/test/testxmlrpc.py?rev=1.6&content-type=text/x-cvsweb-markup

11. About This Document

This document is part of thénux Documentation Project. Thanks go to Dave Winer and maintainers of all
the various XML—-RPC libraries.

11.1. New Versions of This Document

New versions of this document are available aikk -RPC for C/C++ website.

You can also find reasonably up—to—date versions dtithex Documentation Project. They also provide
this manual in alternate formats, including tarballs and PDF.

11.2. Submitting Other Snippets

If you have a sample client or server in another language or environment, we'd love to include it in this
manual. To add a new entry, we need the following information:

* The URL of the XML-RPC implementation used.
* Installation instructions.
» A complete, runnable program.
« Compilation instructions, if applicable.
E—mail your example to themlrpc—c—devel mailing lisor directly toEric Kidd.

Thank you for your help!

11. About This Document 19

http://www.linuxdoc.org/
http://xmlrpc-c.sourceforge.net/
http://www.linuxdoc.org/
http://xmlrpc-c.sourceforge.net/lists.php
http://xmlrpc-c.sourceforge.net/lists.php
mailto:eric.kidd@pobox.com

	Table of Contents
	1. Legal Notice
	2. What is XML-RPC?
	2.1. How it Works
	2.2. Supported Data Types
	2.3. The History of XML-RPC

	3. XML-RPC vs. Other Protocols
	3.1. XML-RPC vs. CORBA
	3.2. XML-RPC vs. DCOM
	3.3. XML-RPC vs. SOAP

	4. Sample API: sumAndDifference
	5. Using XML-RPC with Perl
	5.1. A Perl Client
	5.2. A Stand-Alone Perl Server
	5.3. A CGI-Based Perl Server

	6. Using XML-RPC with Python
	6.1. A Python Client

	7. Using XML-RPC with C and C++
	7.1. A C Client
	7.2. A C++ Client
	7.3. A CGI-Based C Server

	8. Using XML-RPC with Java
	8.1. A Java Client
	8.2. A Stand-Alone Java Server

	9. Using XML-RPC with PHP
	9.1. A PHP Client
	9.2. A PHP Server

	10. Applications with Built-in XML-RPC Support
	10.1. Zope
	10.2. KDE 2.0

	11. About This Document
	11.1. New Versions of This Document
	11.2. Submitting Other Snippets

