
Writing R Extensions
Version 0.90.1

R Development Core Team

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.
Copyright c© 1999 R Development Core Team

i

Table of Contents

Legalese . 1
Acknowledgments . 1

1 Creating R packages . 2
1.1 Package bundles . 3

2 Writing R documentation 4
2.1 The documentation source tree . 4
2.2 Documentation format . 4
2.3 Sectioning . 5
2.4 Marking text . 6
2.5 Mathematics . 6
2.6 Miscellaneous . 7
2.7 Platform-specific documentation . 7

3 System and foreign language interfaces 8
3.1 Operating system access . 8
3.2 Interface functions .C and .Fortran . 8
3.3 dyn.load and dyn.unload . 9
3.4 Interfacing C++ code . 10
3.5 Handling R objects in C . 12

3.5.1 Handling the effects of garbage collection 13
3.5.2 Allocating storage . 14
3.5.3 Details of R types . 15
3.5.4 Attributes. 16
3.5.5 Classes . 17
3.5.6 Handling lists . 18
3.5.7 Finding and setting variables 18

3.6 Interface Functions .Call and .External 19
3.6.1 Calling .Call . 19
3.6.2 Calling .External . 20
3.6.3 Missing and special values . 22

3.7 Evaluating R Expressions from C . 22
3.7.1 Zero-finding . 24
3.7.2 Calculating numerical derivatives 25

Appendix A R (internal) programming
miscellania . 28
A.1 Which R functions should stay <primitive>? 28

Function and variable index 30

ii

Concept index . 31

Legalese 1

Legalese

This document is c© 1999 by the R Development Core Team.
This document is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

A copy of the GNU General Public License is available via WWW at
http://www.gnu.org/copyleft/gpl.html.

You can also obtain it by writing to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.

Acknowledgments

The contributions of Saikat DebRoy (who wrote the first draft of a guide to using .Call
and .External) are gratefully acknowledged.

http://www.gnu.org/copyleft/gpl.html

Chapter 1: Creating R packages 2

1 Creating R packages

Packages provide a mechanism for loading optional code and attached documentation as
needed. The R distribution provides several packages, such as eda, mva, and stepfun.

A package consists of a subdirectory containing the files ‘DESCRIPTION’, ‘INDEX’, and
‘TITLE’, and the subdirectories ‘R’, ‘data’, ‘exec’, ‘inst’, ‘man’, and ‘src’ (some of which
can be missing).

The ‘DESCRIPTION’ file contains basic information about the package in the following
format:

Package: e1071
Version: 0.7-3
Author: Compiled by Fritz Leisch <Friedrich.Leisch@ci.tuwien.ac.at>.
Description: Miscellaneous functions used at the Department of

Statistics at TU Wien (E1071).
Depends:
License: GPL version 2 or later

Continuation lines (e.g., for descriptions longer than one line) start with a whitespace char-
acter. The license field should contain an explicit statement or a well-known abbreviation
(such as ‘GPL’, ‘LGPL’, ‘BSD’, or ‘Artistic’), perhaps followed by a reference to the actual
license file. It is very important that you include this information! Otherwise, it may not
even be legally correct for others to distribute copies of the package.

The ‘TITLE’ file contains a line giving the name of the package and a brief description.
‘INDEX’ contains a line for each sufficiently interesting object in the package, giving its name
and a description (functions such as print methods not usually called explicitly might not
be included). Note that you can automatically create this file using something like R CMD
Rdindex man/*.Rd > INDEX, provided that Perl is available on your system.

The ‘R’ subdirectory contains R code files. The code files to be installed must start with
a (lower- or uppercase) letter and have one of the extensions ‘.R’, ‘.S’, ‘.q’, ‘.r’, or ‘.s’.
We recommend using ‘.R’, as this extension seems to be not used by any other software.
It should be possible to read in the files using source(), so R objects must be created by
assignments. Note that there need be no connection between the name of the file and the
R objects created by it. If necessary, one of these files (historically ‘zzz.R’) should use
library.dynam() inside .First.lib() to load compiled code.

The ‘man’ subdirectory should contain R documentation files for the objects in the pack-
age. The documentation files to be installed must also start with a (lower- or uppercase)
letter and have the extension ‘.Rd’ (the default) or ‘.rd’.

The ‘R’ and ‘man’ subdirectories may contain OS-specific subdirectories named unix,
windows or mac.

The C or FORTRAN source and optionally a ‘Makefile’ for the compiled code is in
‘src’. Note that the ‘Makefile’ most likely is not needed, and if one is to be distributed
considerable care is needed to make it general enough to work on all R platforms.

The ‘data’ subdirectory is for additional data files the package makes available for load-
ing using data(). Currently, data files can have one of three types as indicated by their
extension: plain R code (‘.R’ or ‘.r’), tables (‘.tab’, ‘.txt’, or ‘.csv’), or save() images

Chapter 1: Creating R packages 3

(‘.RData’ or ‘.rda’). The subdirectory should contain a ‘00Index’ file that describes the
datasets available.

The contents of the ‘inst’ subdirectory will be copied recursively to the installation
directory.

Finally, ‘exec’ could contain additional executables the package needs, typically shell
or Perl scripts. This mechanism is currently not used by any Unix package, and still
experimental.

1.1 Package bundles

Sometimes it is convenient to distribute several packages as a bundle. (The main current
example is VR which contains four packages.) The installation scripts on both Unix and
Windows can handle package bundles as from R 0.90.1.

The ‘DESCRIPTION’ file of a bundle has an extra Bundle: field, as in
Bundle: VR
Contains: MASS class nnet spatial
Version: 6.1-6 (1999/11/26)
Author: S original by Venables & Ripley.

R port by Brian Ripley <ripley@stats.ox.ac.uk>, following earlier
work by Kurt Hornik and Albrecht Gebhardt.

BundleDescription: Various functions from the libraries of Venables and
Ripley, ‘Modern Applied Statistics with S-PLUS’ (3rd edition).

License: GPL (version 2 or later)

The Contains: field lists the packages, which should be contained in separate subdi-
rectories with the names given. These are standard packages in all respects except that
the ‘DESCRIPTION’ file is replaced by a ‘DESCRIPTION.in’ file which just contains fields
additional to the ‘DESCRIPTION’ file of the bundle, for example

Package: spatial
Description: Functions for kriging and point pattern analysis.

Chapter 2: Writing R documentation 4

2 Writing R documentation

2.1 The documentation source tree

The help files containing detailed documentation for (potentially) all R objects are in
the ‘src/library/*/man’ subdirectories of the R source tree, where ‘*’ stands for base
where all the standard objects are, and for “standard” packages such as eda and mva.
The ‘doc/manual’ subdirectory contains code for running the translated help files through
LaTEX and further documents pertaining to R.

2.2 Documentation format

The help files are written in a form and syntax—closely resembling TEX and LaTEX—
which can be processed into a variety of formats, including LaTEX, [TN]roff, and html.
The translation is carried out by the Perl script ‘Rdconv’ in ‘$R_HOME/bin’.

For a given R function myfun, use the R command prompt(myfun) to produce the file
‘myfun.Rd’, a “raw” documentation file that can now be filled in with information. The
basic layout of such a file is as follows.

\name{myfun}
myfun is the basename of the file.

\alias{myfun}
\alias{more aliases 1}
\alias{more aliases 2}

etc. Need one \alias{} for each topic explained in the help file.
Note: Each file should contain at least the \alias{name} line.

\title{Title}

\description{...}
A short description of what the function(s) do(es) (one paragraph, a few lines
only).

\usage{myfun(arg1, arg2, ...)}
One or more lines showing the synopsis of the function(s) and variables docu-
mented in the file. These are set verbatim in typewriter font.

\arguments{...}
Description of the function’s arguments, in the following form:

Some optional text before the optional list.
\item{arg1}{Description of arg1.}
\item{arg2}{Description of arg2.}

etc.
Some optional text after the list.

\details{...}
A detailed if possible precise description of the functionality provided. Some-
times, precise \references{} can be given instead.

Chapter 2: Writing R documentation 5

\value{...}
Description of the function’s return value. If a list with multiple values is
returned, you can use

\item{comp1}{Description of result component ‘comp1’}
\item{comp2}{Description of result component ‘comp2’}

etc.

\references{...}
Section of references to the literature; use \url{} for web pointers. Optional
as well as all the following sections.

\section{name}{text}
and maybe more \section{} environments.

\note{Some note you want to have pointed out.}

\author{...}
Who you are. Use \email{} without extra delimiters (‘()’ or ‘< >’) or \url{}.

\seealso{...}
Pointers to related R objects, using \link{}, usually as \code{\link{}}.

\examples{...}
Examples of how to use the function. These are set verbatim in typewriter font.

Note: Use examples which are directly executable! Use random
number generators (e.g., x <- rnorm(100)), or a standard data set
loadable via data(...) (see data() for info) to define data!

By default, text inside \examples{} will be displayed in the output of the help
page and run by make check. You can use \dontrun{} for commands that
should only be shown, but not run, and \testonly{} for extra commands for
testing R that should not be shown to users.
For example,

x <- runif(10) Shown and run.
\dontrun{plot(x)} Only shown.
\testonly{log(x} Only run.

\keyword{key 1}
\keyword{key 2}

Use at least one keyword from the list in ‘$R_HOME/doc/KEYWORDS’.

2.3 Sectioning

To begin a new paragraph or leave a blank in an example, just insert an empty line (as
in (La)TEX). To break a line, use \cr.

In addition to the predefined sections (such as \description{}, \value{}, etc.), you
can “define” arbitrary ones by \section{section title}{...}. E.g.,

\section{Warning}{You must not call this function unless ...}

Note that the additonal named sections are always inserted at fixed positions in the output
(before \note, \seealso and the examples), no matter where they appear in the input.

Chapter 2: Writing R documentation 6

2.4 Marking text

The following logical markup commands are available for indicating specific kinds of
text.

\bold{word} set word in bold font if possible
\emph{word} emphasize word using italic font if possible
\code{word} for pieces of code, using typewriter font if possible
\file{word} for file names
\email{word} for email addresses
\url{word} for URLs

The first two, \bold and \emph, should be used in plain text for emphasis.
Fragments of R code, including the names of R objects, should be marked using \code.

Only backslashes and percent signs need to be escaped (by a backslash) inside \code.
Finally, \link{foo} (usually in the combination \code{\link{foo}}) produces a hyper-

link to the help page for object foo. One main usage of \link is in the \seealso section
of the help page, see Section 2.2 [Documentation format], page 4, above. (This only affects
the creation of hyperlinks, for example in the html pages used by help.start().)

2.5 Mathematics

Mathematical formula are something we want “perfectly” for printed documentation
(i.e., for the conversion to LaTEX and PostScript subsequently) and still want something
useful for ASCII and html online help.

To this end, the two commands \eqn{latex}{ascii} and \deqn{latex}{ascii} are used.
Where \eqn is used for “inline” formula (corresponding to (La)TEX’s $...$, \deqn gives
“displayed equations” (a la LaTEX’s displaymath environment, or TEX’s $$...$$).

Both commands can also be used as \eqn{latexascii} (only one argument) which then
is used for both latex and ascii.

The following example is from the Poisson help page:
\deqn{p(x) = {\lambda^x\ \frac{e^{-\lambda}}{x!}}

{p(x) = lambda^x exp(-lambda)/x!}
for \eqn{x = 0, 1, 2, ...}.

For the LaTEX manual, this becomes

p(x) = λx
e−λ

x!

for x = 0, 1, 2,
For the html and the “direct” (man-like) on-line help we get

p(x) = lambda^x exp(-lambda)/x!

for x = 0, 1, 2,

For historic reasons mostly, the TEX/LaTEX commands \alpha, \Alpha, \beta, \Gamma,
\epsilon, \lambda, \mu, \pi, \sigma, \left(and \right) exist. These can be used
directly, without using the \eqn diversion.

Chapter 2: Writing R documentation 7

2.6 Miscellaneous

Use \R for the R system itself (you don’t need extra ‘{}’ or ‘\’). Use \dots for the dots
in function argument lists ‘...’, and \ldots for ellipsis dots.

After a ‘%’, you can put your own comments regarding the help text. This will be
completely disregarded, normally. Therefore, you can also use it to make part of the “help”
invisible.
Escaping Special Characters. You can produce a backslash (‘\’ by escaping it by another
backslash. (Note that \cr is used for generating line breaks.)

The “comment” and “control” characters ‘%’ and ‘\’ always need to be escaped. Inside
the verbatim-like commands (\code and \examples), no other characters are special.

In “regular” text (no verbatim, no \eqn, . . .), you currently must escape all LaTEX
special characters, i.e., besides ‘%’, ‘{’, and ‘}’, the four specials ‘$’, ‘&’, ‘#’, and ‘_’ are
produced by preceding each with a ‘\’. Further, enter ‘^’ as \eqn{\hat{}}{^}, and ‘~’ by
\eqn{\tilde{}}{~}. Also, ‘<’, ‘>’, and ‘|’ must only be used in math mode, i.e., within
\eqn or \deqn.

2.7 Platform-specific documentation

Sometimes the documentation needs to differ by platform. Currently three OS-specific
options are available, unix, windows and mac, and lines in the help source file can be
enclosed in

#ifdef OS
...

#endif

or
#ifndef OS

...
#endif

for OS-specific inclusion or exclusion.
If the differences between platforms are extensive or the R objects documented are only

relevant to one platform, platform-specific .Rd files can be put in a ‘unix’, ‘windows’ or
‘mac’ subdirectory.

Chapter 3: System and foreign language interfaces 8

3 System and foreign language interfaces

3.1 Operating system access

Access to operating system functions is via the R function system. The details will differ
by platform (see the on-line help), and about all that can safely be assumed is that the first
argument will be a string command that will be passed for execution (not necessarily by a
shell) and the second argument will be internal which if true will collect the output of the
command into an R character vector.

The function system.time is available for timing (although the information available
may be limited on non-Unix-like platforms).

3.2 Interface functions .C and .Fortran

These two functions provide a standard interface to compiled code that has been linked
into R, either at build time or via dyn.load (q.v.). They are primarily intended for compiled
C and Fortran code respectively, but the .C function can be used with other languages which
can generate C interfaces, for example C++.

The first argument to each function is a character string given the symbol name as known
to C or Fortran, that is the function or subroutine name. (The mapping to the symbol name
in the load table is given by the functions symbol.C and symbol.For; that the symbol is
loaded can be tested by, for example, is.loaded(symbol.C("loglin")).)

There can be up to 65 further arguments giving R objects to be passed to compiled code.
Normally these are copied before being passed in, and copied again to an R list object when
the compiled code returns. If the arguments are given names, these are used as names for
the components in the returned list object (but not passed to the compiled code).

The following table gives the mapping between the modes of R vectors and the types of
arguments to a C function or Fortran subroutine.

R storage mode C type Fortran type
logical int * INTEGER
integer int * INTEGER
double double * DOUBLE PRECISION
complex Rcomplex * DOUBLE COMPLEX
character char ** CHARACTER*255

C type Rcomplex is a structure with double members r and i defined in the header
file ‘Complex.h’. Only a single character string can be passed to or from Fortran, and the
success of this is compiler-dependent. Other R objects can be passed to .C, but it is better
to use one of the other interfaces. An exception is passing an R function for use with call_
R, when the object can be handled as void * en route to call_R, but even there .Call is
to be preferred.

It is possible to pass numeric vectors of storage mode double to C as float * or Fortran
as REAL by setting the attribute Csingle, most conveniently by using the R functions
as.single, single or storage.mode. This is intended only to be used to aid interfacing
to existing C or Fortran code.

Chapter 3: System and foreign language interfaces 9

Unless formal argument NAOK is true, all the other arguments are checked for missing
values NA and for the IEEE special values NaN, Inf and -Inf, and the presence of any of
these generates an error. If it is true, these values are passed unchecked.

Argument DUP can be used to suppress copying. It is dangerous: see the on-line help for
arguments against its use. It is not possible to pass numeric vectors as float * or REAL if
DUP=TRUE.

Finally, argument PACKAGE confines the search for the symbol name to a specific shared
library (or use "base" for code compiled into R). Its use is highly desirable, as there is no
way to avoid two package writers using the same symbol name, and such name clashes are
normally sufficient to cause R to crash.

Note that the compiled code should not return anything except through its arguments:
C functions should be of type void and Fortran subprograms should be subroutines.

To fix ideas, let us consider a very simple example which convolves two finite sequences.
(This is hard to do fast in interpreted R code, but easy in C code.) We could do this using
.C by

void convolve(double *a, int *na, double *b, int *nb, double *ab)
{

int i, j, nab = *na + *nb - 1;

for(i = 0; i < nab; i++) ab[i] = 0.0;
for(i = 0; i < *na; i++)
for(j = 0; j < *nb; j++) ab[i + j] += a[i] * b[j];

}

called from R by
conv <- function(a, b)

.C("convolve", as.double(a), as.integer(length(a)),
as.double(b), as.integer(length(b)),
ab = double(length(a) + length(b) - 1))$ab

Note that we take care to coerce all the arguments to the correct R storage mode before
calling .C; mistakes in matching the types can lead to wrong results or hard-to-catch errors.

3.3 dyn.load and dyn.unload

Compiled code to be used with R is loaded as a shared library (Unix) or DLL (Windows).
The library/DLL is loaded by dyn.load and unloaded by dyn.unload. Unloading is not
normally necessary, but it is needed to allow the DLL to be re-built on some platforms,
including Windows.

The first argument to both functions is a character string giving the path to library.
Programmers should not assume a specific file extension for the library (such as .so) but
use a construction like

file.path(path1, path2, paste("mylib", .Platform$dynlib.ext, sep=""))

for platform independence. On Unix systems the path supplied to dyn.load can be an
absolute path, one relative to the current directory or, if it starts with ~, relative to the
user’s home directory.

Chapter 3: System and foreign language interfaces 10

Loading is most often done via a call to library.dynam in the .First.lib function of
a package. This has the form

library.dynam("libname", package, lib.loc)

where libname is the library/DLL name with the extension omitted.

Under some Unix systems there is a choice of how the symbols are resolved when the
library is loaded, governed by the arguments local and now. Only use these if really neces-
sary: in particular using now=FALSE and then calling an unresolved symbol will terminate
R unceremoniously.

If a library/DLL is loaded more than once the most recent version is used. More generally,
if the same symbol name appears in several libraries, the most recently loaded occurrence
is used. The PACKAGES argument provides a good way to avoid any ambiguity in which
occurrence is meant.

3.4 Interfacing C++ code

(Contributed by Adrian Trapletti.)

Suppose we have the following hypothetical C++ library, consisting of the two files ‘X.hh’
and ‘X.cc’, which we want to use in R:

� �
// X.hh

class X
{
public:

X ();
~X ();

};

class Y
{
public:

Y ();
~Y ();

};
 	

Chapter 3: System and foreign language interfaces 11� �
// X.cc

#include <iostream.h>
#include "X.hh"

static Y y;

X::X() { cout << "constructor X" << endl; }
X::~X() { cout << "destructor X" << endl; }
Y::Y() { cout << "constructor Y" << endl; }
Y::~Y() { cout << "destructor Y" << endl; }
 	

implementing the 2 classes X and Y. The only thing we have to do is writing a wrapper
function and ensuring that the function is enclosed in

extern "C" {

}

For example,� �
// X_main.cc:

#include "X.hh"

extern "C" {

void X_main ()
{

X x;
}

}
 	
Compiling and linking should be done with the C++ compiler-linker. For example, under

Linux we might use
g++ -c X.cc
g++ -c X_main.cc
g++ -shared -o X.so X_main.o X.o

Otherwise (i.e., linking, e.g., with GNU ld) the C++ initialization code (and hence the
constructor of the static variable Y) are not called.

Now starting R yields
R: Copyright 1999, The R Development Core Team
Version 0.63.2 (January 12, 1999)
...
Type "q()" to quit R.

R> dyn.load("X.so")
constructor Y

Chapter 3: System and foreign language interfaces 12

R> .C("X_main")
constructor X
destructor X
R> q()
Save workspace image? [y/n/c]: y
destructor Y

3.5 Handling R objects in C

Using C code to speed up the execution of an R function is often very fruitful. Tra-
ditionally this has been done via the .C function in R. One restriction of this interface is
that the R objects can not be handled directly in C. This becomes more troublesome when
one wishes to call R functions from within the C code. There is a C function provided
called call_R (also known as call_S for compatibility with S) that can do that, but it is
cumbersome to use, and the mechanisms documented here are usually simpler to use, as
well as more powerful.

If a user really wants to write C code using internal R data structures, then that can be
done using the .Call and .External function. The syntax for the calling function in R in
each case is similar to that of .C, but the two functions have rather different C interfaces.
Generally the .Call interface (which is modelled on the interface of the same name in S
version 4) is a little simpler to use, but .External is a little more general.

A call to .Call is very similar to .C, for example
.Call("convolve2", a, b)

The first argument should be a character string giving a C symbol name of code that has
already been loaded into R. Up to 65 R objects can passed as arguments. The C side of the
interface is

#include <S.h>

SEXP convolve2(SEXP a, SEXP b)
...

A call to .External is almost identical
.External("convolveE", a, b)

but the C side of the interface is different, having only one argument
#include <Rinternals.h>

SEXP convolveE(SEXP args)
...

Here args is a LISTSXP, a Lisp-style list from which the arguments can be extracted.
In each case the R objects are available for manipulation via a set of functions and

macros defined in the header file ‘Rinternals.h’ or some higher-level macros defined in
‘Rdefines.h’ (included by S.h). Details on .Call and .External are given further below.

Before you decide to use .Call or .External, you should look at other alternatives.
First, consider working in interpreted R code; if this is fast enough, this is normally the
best option. You should also see if using .C is enough. If the task to be performed in C is
simple enough requiring no call to R, .C suffices. The new interfaces are recent additions

Chapter 3: System and foreign language interfaces 13

to S and R, and a great deal of useful code has been written using just .C before they were
available. The .Call and .External interfaces allow much more control, but they also
impose much greater responsibilities so need to be used with care.

There are two approaches that can be taken to handling R objects from within C code.
The first (historically) is to use the macros and functions that have been used to implement
the core parts of R through .Internal calls. A public subset of these is defined in the
header file ‘Rinternals.h’ in the directory ‘$R_HOME/include’ that should be available on
any R installation.

A more recent approach is to use R versions of the macros and functions defined for the
S version 4 interface .Call, which are defined in the header file ‘Rdefines.h’, included by
‘S.h’. This is a somewhat simpler approach, and is certainly to be preferred if the code
might be shared with S at any stage.

A substantial amount of R is implemented using the functions and macros described
here, so the R source code provides a rich source of examples and “how to do it’:’ indeed
many of the examples here were developed by examining closely R system functions for
similar tasks. Do make use of the source code for inspirational examples.

It is necessary to know something about how R objects are handled in C code. All the
R objects you will deal with will be handled with the type SEXP1, which is a pointer to a
structure. Think of this structure as a variant type that can handle all the usual types of
R objects, that is vectors of various modes, functions, environments, language objects and
so on. The details are given later in this section, but for most purposes the programmer
does not need to know them. Think rather of a model such as that used by Visual Basic,
in which R objects are handed around in C code (as they are in interpreted R code) as the
variant type, and the appropriate part is extracted for, for example, numerical calculations,
only when it is needed. As in interpreted R code, much use is made of coercion to force the
variant object to the right type.

3.5.1 Handling the effects of garbage collection

We need to know a little about the way R handles memory allocation. The memory
allocated for R objects is not freed by the user; instead, the memory is from time to time
garbage collected. That is, all the allocated memory not being used is freed, and the objects
that are in use may be moved. If you create an R object in your C code, you must tell R
that you are using the object via call to the PROTECT macro. This has two effects. First
it tells R that the object is in use so it is not destroyed. Second, it ensures that the SEXP
pointer to the object is updated if the object’s structure is moved in memory during garbage
collection. (Because of this it is not safe to save and re-use pointers to parts of an object’s
structure.)

The programmer is solely responsible for housekeeping the calls to PROTECT. There is a
corresponding macro UNPROTECT that takes as argument an int giving the number of SEXPs
to unprotect when they are no longer needed. The protection mechanism is stack-based, so
UNPROTECT(n) unprotects the last n objects which were protected. The calls to PROTECT
and UNPROTECT must balance when the user’s code returns, even if it returns because of an

1 SEXP is an acronym for S imple EXPression, common in LISP-like language syntaxes.

Chapter 3: System and foreign language interfaces 14

error (calling error or errorcall for example). R will warn about stack imbalance in
.Call (or .External) if the housekeeping is wrong.

Here is a small example of creating an R numeric vector in C code. First we use the
macros in ‘Rdefines.h’:

#include <Rdefines.h>

SEXP ab;
....

PROTECT(ab = NEW_NUMERIC(2));
NUMERIC_POINTER(ab)[0] = 123.45;
NUMERIC_POINTER(ab)[1] = 67.89;
UNPROTECT(1);

and then those in ‘Rinternals.h’:
#include <Rinternals.h>

SEXP ab;
....

PROTECT(ab = allocVector(REALSXP, 2));
REAL(ab)[0] = 123.45; REAL(ab)[1] = 67.89;
UNPROTECT(1);

Now, the reader may ask how the R object could possibly get removed during those
manipulations, as it is just our C code that is running. The answer is we do not know (nor
want to know) what is hiding behind the R macros and functions we use, and any of them
might cause memory to be allocated, hence garbage collection and hence our object ab to
be (re)moved. It is wise to err on the side of caution and assume that any of the R macros
and functions might (re)move the object.

Protection is not needed for objects which R already knows are in use. In particular,
this applies to function arguments.

There is a less-used2 macro UNPROTECT_PTR(s) that unprotects the SEXP s.

3.5.2 Allocating storage

For many purposes it is sufficient to allocate R objects and manipulate those. There
are quite a few allocXxx functions defined in ‘Rinternals.h’ — you may want to explore
them. These allocate R objects of various types, and for the standard vector types there
are NEW_XXX macros defined in ‘Rdefines.h’.

If storage is required for C objects during the calculations this is best allocating by
calling R_alloc; such storage is automatically released once the call to .C or .Call or
.External returns. R_alloc is defined in ‘Memory.h’ (included by ‘Rinternals.h’ and by
‘Rdefines.h’) as

char* R_alloc(long, int);

so a typical usage is
v = (double*) R_alloc(nlag, sizeof(double));

2 for historical reasons, UNPROTECT_PTR(s) has existed only since R version 0.63.0 (Nov. 1998)

Chapter 3: System and foreign language interfaces 15

Memory allocated by R_alloc is not zeroed, but the related function S_alloc calls
R_alloc and then zeroes the memory.

All of these memory allocation routines do their own error-checking, so the programmer
may assume that they will raise an error and not return if the memory cannot be allocated.

3.5.3 Details of R types

Users of the ‘Rinternals.h’ macros will need to know how the R types are known
internally: this is more or less completely hidden if the ‘Rdefines.h’ macros are used.

The different R data types are represented in C by SEXPTYPE. Some of these are
familiar from R and some are internal data types. The usual R object modes are given in
the table.

SEXPTYPE R equivalent / explanation
REALSXP numeric with storage mode double
INTSXP integer
CPLXSXP complex
LGLSXP logical
STRSXP character
VECSXP list (generic vector)
LISTXP "dotted-pair" list
DOTSXP a . . . object
NILSXP NULL
SYMSXP name/symbol
CLOSXP function or function closure
ENVSXP environment

Among the important internal SEXPTYPEs are LANGSXP, CHARSXP etc.
Unless you are very sure about the type of the arguments, the code should check the

data types. Sometimes it may also be necessary to check data types of objects created by
evaluating an R expression in the C code. You can use functions like isReal, isInteger
and isString to do type checking. See the header file ‘Rinternals.h’ for definitions of
other such functions. All of these take a SEXP as argument and return 1 or 0 to indicate
TRUE or FALSE. Once again there are two ways to do this, and ‘Rdefines.h’ has macros
such as IS_NUMERIC.

What happens if the SEXP is not of the correct type? Sometimes you have no other option
except to generate an error. You can use the function error for this. It is usually better to
coerce the object to the correct type. For example, if you find that an SEXP is of the type
INTEGER, but you need a REAL object, you can change the type by using, equivalently,

PROTECT(newSexp = coerceVector(oldSexp, REALSXP));

or
PROTECT(newSexp = AS_NUMERIC(oldSexp));

Protection is needed as a new object is created; the object formerly pointed to by the SEXP
is re-used is still protected but now unused.

All the coercion functions do their own error-checking, and generate NAs with a warning
or stop with an error as appropriate.

So far we have only seen how to create and coerce R objects from C code, and how to
extract the numeric data from numeric R vectors. These can suffice to take us a long way

Chapter 3: System and foreign language interfaces 16

in interfacing R objects to numerical algorithms, but we may need to know a little more to
create useful return objects.

3.5.4 Attributes

Many R objects have attributes: some of the most useful are classes and the dim and
dimnames that mark objects as matrices or arrays. It can also be helpful to work with the
names attribute of vectors.

To illustrate this, let us write code to take the outer product of two vectors (which outer
and %o% already do). As usual the R code is simple

out <- function(x, y) .Call("out", as.double(x), as.double(y))

where we expect x and y to be numeric vectors, possibly with names. This time we do the
coercion in the calling R code.
C code to do the computations is

#include <Rinternals.h>

SEXP out(SEXP x, SEXP y)
{

int i, j, nx, ny;
double tmp;
SEXP ans;

nx = length(x); ny = length(y);
PROTECT(ans = allocMatrix(REALSXP, nx, ny));
for(i = 0; i < nx; i++) {

tmp = REAL(x)[i];
for(j = 0; j < ny; j++)
REAL(ans)[i + nx*j] = tmp * REAL(y)[j];

}
UNPROTECT(1);
return(ans);

}

but we would like to set the dimnames of the result. Although allocMatrix provides a
short cut, we will show how to set the dim attribute directly.

#include <Rinternals.h>

SEXP out(SEXP x, SEXP y)
{

int i, j, nx, ny;
double tmp;
SEXP ans, dim, dimnames;

nx = length(x); ny = length(y);
PROTECT(ans = allocVector(nx*ny, REALSXP));
for(i = 0; i < nx; i++) {

tmp = REAL(x)[i];
for(j = 0; j < ny; j++)

Chapter 3: System and foreign language interfaces 17

REAL(ans)[i + nx*j] = tmp * REAL(y)[j];
}
PROTECT(dim = allocVector(INTSXP, 2));
INTEGER(dim)[0] = nx; INTEGER(dim)[1] = ny;
setAttrib(ans, R_DimSymbol, dim);

PROTECT(dimnames = allocVector(VECSXP, 2));
VECTOR(dimnames)[0] = getAttrib(x, R_NamesSymbol);
VECTOR(dimnames)[1] = getAttrib(y, R_NamesSymbol);
setAttrib(ans, R_DimNamesSymbol, dimnames);
UNPROTECT(3);
return(ans);

}

This example introduces several new features. The getAttrib and setAttrib functions
get and set individual attributes. Their second argument is a SEXP defining the name in
the symbol table of the attribute we want; these and many such symbols are defined in the
header file ‘Rinternals.h’.

There are shortcuts here too: the functions namesgets, dimgets and dimnamesgets are
the internal versions of names<-, dim<- and dimnames<-, and there are functions such as
GetMatrixDimnames and GetArrayDimnames.

What happens if we want to add an attribute that is not pre-defined? We need to add a
symbol for it via a call to install. Suppose for illustration we wanted to add an attribute
"version" with value 3.0. We could use

{ SEXP version;
PROTECT(version = allocVector(REALSXP, 1));
REAL(vector) = 3.0;
setAttrib(ans, install("version"), version);
UNPROTECT(1);
}

Using install when it is not needed is harmless and provides a simple way to retrieve
the symbol from the symbol table if it is already installed.

3.5.5 Classes

In R the class is just the attribute named "class" so it can be handled as such, but
there is a shortcut classgets. Suppose we want to give the return value in our example
the class "mat". We can use

#include <Rdefines.h>
....

SEXP ans, dim, dimnames, class;
....

PROTECT(class = allocVector(STRSXP, 1));
STRING(class)[0] = COPY_TO_USER_STRING("mat");
classgets(ans, class);
UNPROTECT(4);
return(ans);

}

Chapter 3: System and foreign language interfaces 18

As the value is a character vector, we have to know how to create that from a C character
array, which we do using the macro COPY_TO_USER_STRING defined in ‘Rdefines.h’.

3.5.6 Handling lists

Some care is needed with lists, as R has moved from using LISP-like lists (now called
‘pairlists’) to S-like generic vectors. As a result, the appropriate test for a object of mode
list is isNewList, and we need allocVector(VECSXP, n) and not allocList(n).

List elements can be retrieved or set by direct access to the elements of the generic
vector. Suppose we have a list object

a <- list(f=1, g=2, h=3)

Then we can access a$g as a[[2]] by
double g;

....
g = REAL(VECTOR(a)[1])[0];

This can rapidly become tedious, and the following function (based on one in package
nls) is very useful:

/* get the list element named str, or return NULL */

SEXP getListElement(SEXP list, char *str)
{

SEXP elmt = R_NilValue, names = getAttrib(list, R_NamesSymbol);
int i;

for (i = 0; i < length(list); i++)
if(strcmp(CHAR(STRING(names)[i]), str) == 0) {
elmt = VECTOR(list)[i];
break;

}
return elmt;

}

and enables us to say
double g;
g = REAL(getListElement(a, "g"))[0];

3.5.7 Finding and setting variables

It will be usual that all the R objects needed in our C computations are passed as
arguments to .Call or .External, but it is possible to find the values of R objects from
within the C given their names. The following code is the equivalent of get(name, envir
= rho).

SEXP getvar(SEXP name, SEXP rho)
{
SEXP ans;

if(!isString(name) || length(name) != 1)
error("name is not a single string");

Chapter 3: System and foreign language interfaces 19

if(!isEnvironment(rho))
error("rho should be an environment");

ans = findVar(install(CHAR(STRING(name)[0])), rho);
printf("first value is %f\n", REAL(ans)[0]);
return(R_NilValue);

}

The main work is done by findVar, but to use it we need to install name as a name in
the symbol table. As we wanted the value for internal use, we return NULL.

Similar functions with syntax
void defineVar(SEXP symbol, SEXP value, SEXP rho)
void setVar(SEXP symbol, SEXP value, SEXP rho)

can be used to assign values to R objects, in the specified environment frame and to perform
the equivalent of assign(x, value, envir = rho, inherits = TRUE) respectively.

3.6 Interface Functions .Call and .External

In this section we consider the details of the R/C interfaces.
These two interfaces have almost the same functionality. .Call is based on the interface

of the same name in S version 4, and .External is based on .Internal. .External is more
complex but allows a variable number of arguments.

3.6.1 Calling .Call

Let us convert our finite convolution example to use .Call, first using the ‘Rdefines.h’
macros. The calling function in R is

conv <- function(a, b) .Call("convolve2", a, b)

which could hardly be simpler, but as we shall see all the type checking must be transferred
to the C code, which is

#include <S.h>

SEXP convolve2(SEXP a, SEXP b)
{

int i, j, na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

PROTECT(a = AS_NUMERIC(a));
PROTECT(b = AS_NUMERIC(b));
na = LENGTH(a); nb = LENGTH(b); nab = na + nb - 1;
PROTECT(ab = NEW_NUMERIC(nab));
xa = NUMERIC_POINTER(a); xb = NUMERIC_POINTER(b);
xab = NUMERIC_POINTER(ab);
for(i = 0; i < nab; i++) xab[i] = 0.0;
for(i = 0; i < na; i++)

for(j = 0; j < nb; j++) xab[i + j] += xa[i] * xb[j];
UNPROTECT(3);
return(ab);

Chapter 3: System and foreign language interfaces 20

}

Note that unlike the macros in S version 4, the R versions of these macros do check that
coercion can be done and raise an error if it fails. They will raise warnings if missing values
are introduced by coercion. Although we illustrate doing the coercion in the C code here,
it often is simpler to do the necessary coercions in the R code.

Now for the version in R-internal style. Only the C code changes.
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)
{
int i, j, na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

PROTECT(a = coerceVector(a, REALSXP));
PROTECT(b = coerceVector(b, REALSXP));
na = length(a); nb = length(b); nab = na + nb - 1;
PROTECT(ab = allocVector(nab, REALSXP));
xa = REAL(a); xb = REAL(b);
xab = REAL(ab);
for(i = 0; i < nab; i++) xab[i] = 0.0;
for(i = 0; i < na; i++)

for(j = 0; j < nb; j++) xab[i + j] += xa[i] * xb[j];
UNPROTECT(3);
return(ab);

}

This is called in exactly the same way.

3.6.2 Calling .External

We can use the same example to illustrate .External. The R code changes only by
replacing .Call by .External

conv <- function(a, b) .External("convolveE", a, b)

but the main change is how the arguments are passed to the C code, this time as a single
SEXP. The only change to the C code is how we handle the arguments.

#include <Rinternals.h>

SEXP convolveE(SEXP args)
{
int i, j, na, nb, nab;
double *xa, *xb, *xab;
SEXP a, b, ab;

PROTECT(a = coerceVector(CADR(args), REALSXP)));
PROTECT(b = coerceVector(CADDR(args), REALSXP)));

...
}

Chapter 3: System and foreign language interfaces 21

Once again we do not need to protect the arguments, as in the R side of the interface they
are objects that are already in use. The macros

first = CADR(args);
second = CADDR(args);
third = CADDDR(args);
fourth = CAD4R(args);

provide convenient ways to access the first four arguments. More generally we can use the
CDR and CAR macros as in

args = CDR(args); a = CAR(args);
args = CDR(args); b = CAR(args);

which clearly allows us to extract an unlimited number of arguments (whereas .Call has a
limit, albeit at 65 not a small one).

More usefully, the .External interface provides an easy way to handle calls with a
variable number of arguments, as length(args) will give the number of arguments supplied
(of which the first is ignored). We may need to know the names (‘tags’) given to the actual
arguments, which we can by using the TAG macro and using something like the following
example, that print the names and the first value of its arguments if they are vector types.

SEXP showArgs(SEXP args)
{

int i, nargs;
Rcomplex cpl;
char *name;

if((nargs = length(args) - 1) > 0) {
for(i = 0; i < nargs; i++) {
args = CDR(args);
name = CHAR(PRINTNAME(TAG(args)));
switch(TYPEOF(CAR(args))) {
case REALSXP:

printf("[%d] ’%s’ %f\n", i+1, name, REAL(CAR(args))[0]);
break;
case LGLSXP:
case INTSXP:

printf("[%d] ’%s’ %d\n", i+1, name, INTEGER(CAR(args))[0]);
break;
case CPLXSXP:

cpl = COMPLEX(CAR(args))[0];
printf("[%d] ’%s’ %f + %fi\n", i+1, name, cpl.r, cpl.i);
break;

case STRSXP:
printf("[%d] ’%s’ %s\n", i+1, name,

CHAR(STRING(CAR(args))[0]));
break;

default:
printf("[%d] ’%s’ R type\n", i+1, name);

}
}

Chapter 3: System and foreign language interfaces 22

}
return(R_NilValue);

}

This can be called by the wrapper function
showArgs <- function(...) .External("showArgs", ...)

Note that this style of programming is convenient but not necessary, as an alternative style
is

showArgs <- function(...) .Call("showArgs1", list(...))

3.6.3 Missing and special values

One piece of error-checking the .C call does (unless NAOK is true) is to check for missing
(NA) and IEEE special values (Inf, -Inf and NaN) and give an error if any are found. With
the .Call interface these will be passed to our code. In this example the special values are
no problem, as IEEE arithmetic will handle them correctly. In the current implementation
this is also true of NA as it is a type of NaN, but it is unwise to rely on such details. Thus
we will re-write the code to handle NAs using macros defined in ‘Arith.h’.

The code changes are the same in any of the versions of convolve2 or convolveE:
...

for(i = 0; i < na; i++)
for(j = 0; j < nb; j++)

if(ISNA(xa[i]) || ISNA(xb[j]) || ISNA(xab[i + j]))
xab[i + j] = NA_REAL;

else
xab[i + j] += xa[i] * xb[j];

...

Note that the ISNA macro, and the similar macros ISNAN (which checks for NaN or NA)
and R_FINITE (which is false for NA and all the special values), only apply to numeric values
of type double. Missingness of integers, logicals and character strings can be tested by
equality to the constants NA_INTEGER, NA_LOGICAL and NA_STRING. These and NA_REAL
can be used to set elements of R vectors to NA.

The constants R_NaN, R_PosInf, R_NegInf and R_NaReal can be used to set doubles to
the special values.

3.7 Evaluating R Expressions from C

We noted that the call_R interface could be used to evaluate R expressions from C
code, but the current interfaces are much more convenient to use. The main function we
will use is

SEXP eval(SEXP expr, SEXP rho);

the equivalent of the interpreted R code eval(expr, envir = rho), although we can also
make use of findVar, defineVar and findFun (which restricts the search to functions).

To see how this might be applied, here is a simplified internal version of lapply for
expressions, used as

Chapter 3: System and foreign language interfaces 23

a <- list(a = 1:5, b = rnorm(10), test = runif(100))
.Call("lapply", a, quote(sum(x)), new.env())

with C code

SEXP lapply(SEXP list, SEXP expr, SEXP rho)
{
int i, n = length(list);
SEXP ans;

if(!isNewList(list)) error("‘list’ must be a list");
if(!isEnvironment(rho)) error("‘rho’ should be an environment");
PROTECT(ans = allocVector(VECSXP, n));
for(i = 0; i < n; i++) {

defineVar(install("x"), VECTOR(list)[i], rho);
VECTOR(ans)[i] = eval(expr, rho);

}
setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));
UNPROTECT(1);
return(ans);

}

It would be closer to lapply if we could pass in a function rather than an expression. One
way to do this is via interpreted R code as in the next example, but it is possible (if somewhat
obscure) to do this in C code. The following is based on the code in ‘src/main/optimize.c’.

SEXP lapply2(SEXP list, SEXP expr, SEXP rho)
{
int i, n = length(list);
SEXP R_fcall, s, ans;

if(!isNewList(list)) error("‘list’ must be a list");
if(!isFunction(fn)) error("‘fn’ must be a function");
if(!isEnvironment(rho)) error("‘rho’ should be an environment");
PROTECT(R_fcall = lang2(fn, R_NilValue));
PROTECT(ans = allocVector(VECSXP, n));
for(i = 0; i < n; i++) {

CADR(R_fcall) = VECTOR(list)[i];
VECTOR(ans)[i] = eval(expr, rho);

}
setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));
UNPROTECT(1);
return(ans);

}

used by

.Call("lapply2", a, sum, new.env())

Function lang2 creates an executable ‘list’ of two elements, but this will only be clear to
those with a knowledge of a LISP-like language.

Chapter 3: System and foreign language interfaces 24

3.7.1 Zero-finding

In this section we re-work the example in ‘demos/dynload’ of call_R (based on that for
call_S in Becker, Chambers & Wilks (1988)) on finding a zero of a univariate function.
The R code and an example are

zero <- function(f, guesses, tol = 1e-7) {
f.check <- function(x) {

x <- f(x)
if(!is.numeric(x)) stop("Need a numeric result")
as.double(x)

}
.Call("zero", body(f.check), as.double(guesses), as.double(tol),

new.env())
}

cube1 <- function(x) (x^2 + 1) * (x - 1.5)
zero(cube1, c(0, 5))

where this time we do the coercion and error-checking in the R code. The C code is
SEXP mkans(double x)
{

SEXP ans;
PROTECT(ans = allocVector(REALSXP, 1));
REAL(ans)[0] = x;
UNPROTECT(1);
return ans;

}

double feval(double x, SEXP f, SEXP rho)
{

defineVar(install("x"), mkans(x), rho);
return(REAL(eval(f, rho))[0]);

}

SEXP zero(SEXP f, SEXP guesses, SEXP stol, SEXP rho)
{

double x0 = REAL(guesses)[0], x1 = REAL(guesses)[1],
tol = REAL(stol)[0];

double f0, f1, fc, xc;
SEXP res;

if(tol <= 0.0) error("non-positive tol value");
f0 = feval(x0, f, rho); f1 = feval(x1, f, rho);
if(f0 == 0.0) return mkans(x0);
if(f1 == 0.0) return mkans(x1);
if(f0*f1 > 0.0) error("x[0] and x[1] have the same sign");
for(;;) {

xc = 0.5*(x0+x1);
if(fabs(x0-x1) < tol) return mkans(xc);
fc = feval(xc, f, rho);

Chapter 3: System and foreign language interfaces 25

if(fc == 0) return mkans(xc);
if(f0*fc > 0.0) {

x0 = xc; f0 = fc;
} else {

x1 = xc; f1 = fc;
}

}
}

The C code is essentially unchanged for the call_R version, just using a couple of functions
to convert from double to SEXP and to evaluate f.check.

3.7.2 Calculating numerical derivatives

We will use a longer example (by Saikat DebRoy) to illustrate the use of evaluation
and .External. This calculates numerical derivatives, something that could be done as
effectively in interpreted R code but may be needed as part of a larger C calculation.

An interpreted R version and an example are

numeric.deriv <- function(expr, theta, rho=sys.frame(sys.parent()))
{
eps <- sqrt(.Machine$double.eps)
ans <- eval(substitute(expr), rho)
grad <- matrix(,length(ans), length(theta),

dimnames=list(NULL, theta))
for (i in seq(along=theta)) {

old <- get(theta[i], envir=rho)
delta <- eps * min(1, abs(old))
assign(theta[i], old+delta, envir=rho)
ans1 <- eval(substitute(expr), rho)
assign(theta[i], old, envir=rho)
grad[, i] <- (ans1 - ans)/delta

}
attr(ans, "gradient") <- grad
ans

}
omega <- 1:5; x <- 1; y <- 2
numeric.deriv(sin(omega*x*y), c("x", "y"))

where expr is an expression, theta a character vector of variable names and rho the envi-
ronment to be used.

For the compiled version the call from R will be

.External("numeric_deriv", expr, theta, rho)

with example usage

.External("numeric_deriv", quote(sin(omega*x*y)),
c("x", "y"), .GlobalEnv)

Note the need to quote the expression to stop it being evaluated.

Here is the complete C code which we will explain section by section.

Chapter 3: System and foreign language interfaces 26

#include <S.h> /* for DOUBLE_EPS */
#include <Rinternals.h>

SEXP numeric_deriv(SEXP args)
{
SEXP theta, expr, rho, ans, ans1, gradient, par, dimnames;
double tt, xx, delta, eps = sqrt(DOUBLE_EPS);
int start, i, j;

expr = CADR(args);
if(!isString(theta = CADDR(args)))

error("theta should be of type character");
if(!isEnvironment(rho = CADDR(args)))

error("rho should be an environment");

PROTECT(ans = coerceVector(eval(expr, rho), REALSXP));
PROTECT(gradient = allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));

for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {
PROTECT(par = findVar(install(CHAR(STRING(theta)[i])), rho));
tt = REAL(par)[0];
xx = fabs(tt);
delta = (xx < 1) ? eps : xx*eps;
REAL(par)[0] += delta;
PROTECT(ans1 = coerceVector(eval(expr, rho), REALSXP));
for(j = 0; j < LENGTH(ans); j++)

REAL(gradient)[j + start] =
(REAL(ans1)[j] - REAL(ans)[j])/delta;

REAL(par)[0] = tt;
UNPROTECT(2); /* par, ans1 */

}

PROTECT(dimnames = allocVector(VECSXP, 2));
VECTOR(dimnames)[1] = theta;
dimnamesgets(gradient, dimnames);
setAttrib(ans, install("gradient"), gradient);
UNPROTECT(3); /* ans gradient dimnames */
return ans;

}

The code to handle the arguments is

expr = CADR(args);
if(!isString(theta = CADDR(args)))

error("theta should be of type character");
if(!isEnvironment(rho = CADDR(args)))

error("rho should be an environment");

Note that we check for correct types of theta and rho but do not check the type of expr.
That is because eval can handle many types of R objects other than EXPRSXP. There is no

Chapter 3: System and foreign language interfaces 27

useful coercion we can do, so we stop with an error message if the arguments are not of the
correct mode.

The first step in the code is to evaluate the expression in the environment rho, by
PROTECT(ans = eval(expr, rho));

We then allocate space for the calculated derivative by
PROTECT(gradient = allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));

The first argument to allocMatrix gives the SEXPTYPE of the matrix: here we want it to
be REALSXP. The other two arguments are the numbers of rows and columns.

for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {
PROTECT(par = findVar(install(CHAR(STRING(theta)[i])), rho));

Here, we are entering a for loop. We loop through each of the variables. In the for loop,
we first create a symbol corresponding to the i’th element of the STRSXP theta. Here,
STRING(theta)[i] accesses the i’th element of the STRSXP theta. Macro CHAR() extracts
the actual character representation of it: it returns a pointer. We then install the name and
use findVar to find its value.

tt = REAL(par)[0];
xx = fabs(tt);
delta = (xx < 1) ? eps : xx*eps;
REAL(par)[0] += delta;
PROTECT(ans1 = eval(expr, rho)); /* not currently needed */

We first extract the real value of the parameter, then calculate delta, the increment to be
used for approximating the numerical derivative. Then we change the value stored in par
(in environment rho) by delta and evaluate expr in environment rho again. Because we
are directly dealing with original R memory locations here, R does the evaluation for the
changed parameter value.

for(j = 0; j < LENGTH(ans); j++)
REAL(gradient)[j + start] =

(REAL(ans1)[j] - REAL(ans)[j])/delta;
REAL(par)[0] = tt;
UNPROTECT(2);

}

Now, we compute the i’th column of the gradient matrix. Note how it is accessed: R stores
matrices by column (like Fortran).

PROTECT(dimnames = allocVector(VECSXP, 2));
VECTOR(dimnames)[1] = theta;
dimnamesgets(gradient, dimnames);
setAttrib(ans, install("gradient"), gradient);
UNPROTECT(3);
return ans;

}

First we add column names to the gradient matrix. This is done by allocating a list (a
VECSXP) whose first element, the row names, is NULL (the default) and the second element,
the column names, is set as theta. This list is then assigned as the attribute having the
symbol R_DimNamesSymbol. Finally we set the gradient matrix as the gradient attribute of
ans, unprotect the remaining protected locations and return the answer ans.

Appendix A: R (internal) programming miscellania 28

Appendix A R (internal) programming miscellania

A.1 Which R functions should stay <primitive>?

In general, all functions should be written using .Internal(). However, there are
exceptions which are fully specified as follows:
1. “Special functions” which really are language elements, however exist as <primitive>s

in R:
{ (if for while repeat break next
return function on.exit

2. Basic operators (i.e., functions usually not called as foo(a, b, ...)) for subsetting,
assignment, arithmetic and logic. These are the following 1-, 2-, and N-argument
functions:

[[[$
<- <<- [<- [[<- $<-

+ - * / ^ %% %*% %/%
< <= == != >= > \\
| || & && !

3. “Low level” 0- and 1-argument functions shall remain <primitive>, iff they belong to
one of the following groups of functions:
a. Basic mathematical functions with a single argument, i.e.,

sign abs
floor ceiling

sqrt exp
cos sin tan
acos asin atan
cosh sinh tanh
acosh asinh atanh

cumsum cumprod
cummax cummin

Im Re
Arg Conj Mod

Note that log has two arguments, and we will use
log <- function(x, base = exp(1)) {

if(missing(base))
.Internal(log(x))

else
.Internal(log(x, base))

}

in order to ensure that log(x = pi, base = 2) is identical to log(base = 2, x =
pi).

Appendix A: R (internal) programming miscellania 29

b. Functions rarely used outside of “programming” (i.e., mostly used inside other
functions), such as

nargs missing
interactive is.xxx
.Primitive .Internal .External
symbol.C symbol.For
globalenv pos.to.env unclass

(where xxx stands for almost 30 different notions, such as function, vector,
numeric, and so forth).

c. The programming and session management utilities
debug undebug trace untrace
browser proc.time

4. The following basic assignment and extractor functions
.Alias environment<-
length length<-
class class<-
attr attr<-
attributes attributes<-
dim dim<-
dimnames dimnames<-

5. A few other N-argument functions shall also remain <primitive>, for efficiency reasons.
Care is taken in order to treat named arguments properly:

: ~ c list unlist
call as.call expression substitute
UseMethod invisible
.C .Fortran .Call

Function and variable index 30

Function and variable index

.

.C . 8

.Call . 19

.External . 20

.Fortran . 8

.Internal . 28

.Primitive . 28

\
\alias . 4

\alpha . 6

\Alpha . 6

\arguments . 4

\author . 5

\beta . 6

\bold . 6

\code . 6

\deqn . 6

\description . 4

\details . 4

\dontrun . 5

\email . 6

\emph . 6

\epsilon . 6

\eqn . 6

\examples. 5

\file . 6

\Gamma . 6

\keyword . 5

\lambda . 6
\left(. 6
\mu . 6
\name . 4
\note . 5
\pi . 6
\R . 7
\references . 5
\right) . 6
\section . 5
\seealso . 5
\sigma . 6
\testonly. 5
\title . 4
\url . 6
\usage . 4
\value . 5

D
dyn.load . 9
dyn.unload . 9

P
PROTECT . 13

U
UNPROTECT . 13
UNPROTECT_PTR . 14

Concept index 31

Concept index

A
Allocating storage . 14
Attributes . 16

C
Classes . 17

D

Details of R types . 15

F
Finding and setting variables 18

H
Handling lists . 18
Handling the effects of garbage collection 13

	Legalese
	Acknowledgments
	Creating R packages
	Package bundles

	Writing R documentation
	The documentation source tree
	Documentation format
	Sectioning
	Marking text
	Mathematics
	Miscellaneous
	Platform-specific documentation

	System and foreign language interfaces
	Operating system access
	Interface functions .C and .Fortran
	dyn.load and dyn.unload
	Interfacing C{@char 43}{@char 43} code
	Handling R objects in C
	Handling the effects of garbage collection
	Allocating storage
	Details of R types
	Attributes
	Classes
	Handling lists
	Finding and setting variables

	Interface Functions .Call and .External
	Calling .Call
	Calling .External
	Missing and special values

	Evaluating R Expressions from C
	Zero-finding
	Calculating numerical derivatives

	R (internal) programming miscellania
	Which R functions should stay {@less }primitive{@gtr }?
	Function and variable index
	Concept index

