
 Linux Networking−HOWTO:

Table of Contents

Linux Networking−HOWTO:..1
Author: Joshua Drake poet@linuxports.com...1
1.Introduction...1
2.Document History...1
3.How to use this HOWTO..1
4.General Information about Linux Networking...1
5.Generic Network Configuration Information...1
6.Ethernet Information...2
7.IP Related Information..2
8.Advanced Networking with Kernel 2.2..2
9.Kernel 2.2 IP Command Reference (Work In Progress)..2
10.Using common PC hardware..2
11.Other Network Technologies..3
12.Cables and Cabling...3
13.Glossary of Terms used in this document...3
14.Authors..3
15.Copyright..3
1.Introduction...4
2.Document History...4
2.1 Feedback..4
3.How to use this HOWTO..4
3.1 Conventions used in this document...5
4.General Information about Linux Networking...6
4.1 Linux Networking Resources..6
4.2 Where to get some non−linux−specific network information...6
5.Generic Network Configuration Information...7
5.1 What do I need to start ?..7

Current Kernel source(Optional)..7
IP Addresses, an Explanation...8

5.2 Where should I put the configuration commands ?...10
5.3 Creating your network interfaces...11
5.4 Configuring a network interface. Kernels 2.0 and 2.2...12
5.5 Configuring your Name Resolver..15

What's in a name ?..16
What information you will need...17
/etc/resolv.conf..17
/etc/host.conf...18
/etc/hosts...18
Running a name server...18

5.6 Configuring your loopback interface...19
5.7 Routing...19

So what does the routed program do ?..21
5.8 Configuring your network servers and services...23

/etc/services...24
An example /etc/services file..25
/etc/inetd.conf...28
An example /etc/inetd.conf...30

 Linux Networking−HOWTO:

i

Table of Contents

5.9 Other miscellaneous network related configuration files..31
/etc/protocols...31
/etc/networks...32

5.10 Network Security and access control...32
/etc/ftpusers...33
/etc/securetty...33
The tcpd hosts access control mechanism..33
/etc/hosts.allow...34
/etc/hosts.deny...35
/etc/hosts.equiv...35
Configure your ftp daemon properly..35
Network Firewalling...36
Other suggestions..36

6.Ethernet Information...36
6.1 Supported Ethernet Cards..36

3Com...36
AMD, ATT, Allied Telesis, Ansel, Apricot...37
Cabletron, Cogent, Crystal Lan..37
Danpex, DEC, Digi, DLink..37
Fujitsu, HP, ICL, Intel..37
KTI, Macromate, NCR NE2000/1000, Netgear, New Media..37
PureData, SEEQ, SMC...38
Sun Lance, Sun Intel, Schneider, WD, Zenith, IBM, Enyx..38

6.2 General Ethernet Information..38
6.3 Using 2 or more Ethernet Cards in the same machine...39

If your driver is a module (Normal with newer distros)...39
7.IP Related Information..40
7.1 DHCP and DHCPD...40
7.2 DHCP Client Setup for users of LinuxConf..40
7.3 DHCP Server Setup for Linux...40

Options for DHCPD..41
Starting the server...42

7.4 EQL − multiple line traffic equaliser...43
7.5 IP Accounting (for Linux−2.0)..44

IP Accounting (for Linux−2.2)...45
7.6 IP Aliasing...46
7.7 IP Firewall (for Linux−2.0)...46

IP Firewall (for Linux−2.2)..49
7.8 IPIP Encapsulation...49

A tunneled network configuration..50
A tunneled host configuration...51

7.9 IP Masquerade...52
Masquerading with IPFWADM (Kernels 2.0.x)..53
Masquerading with IPCHAINS..54

7.10 IP Transparent Proxy...54
7.11 IPv6..55
7.12 Mobile IP...55

 Linux Networking−HOWTO:

ii

Table of Contents

7.13 Multicast..56
7.14 Traffic Shaper − Changing allowed bandwidth...56
8.Advanced Networking with Kernel 2.2..57
8.1 The Basics..57

Using the information...58
8.2 Adding a route with the new ip tools...58
8.3 Using NAT with Kernel 2.2...58
9.Kernel 2.2 IP Command Reference (Work In Progress)..59
9.1 ip..59
10.Using common PC hardware..61
10.1 ISDN..61
10.2 PLIP for Linux−2.0..62

PLIP for Linux−2.2...63
10.3 PPP...64

Maintaining a permanent connection to the net with pppd...65
10.4 SLIP client − (Antiquated)...65

dip...65
slattach..66
When do I use which ?..66
Static SLIP server with a dialup line and DIP..67
Dynamic SLIP server with a dialup line and DIP...67
Using DIP...67
Permanent SLIP connection using a leased line and slattach...70
SLIP server...71
Slip Server using sliplogin..71
Where to get sliplogin...71
Configuring /etc/passwd for Slip hosts...72
Configuring /etc/slip.hosts..72
Configuring the /etc/slip.login file..73
Configuring the /etc/slip.logout file..74
Configuring the /etc/slip.tty file..74
Slip Server using dip...75
Configuring /etc/diphosts..75
SLIP server using the dSLIP package...76

11.Other Network Technologies..77
11.1 ARCNet...77
11.2 Appletalk (AF_APPLETALK)..78

Configuring the Appletalk software...78
Exporting a Linux filesystems via Appletalk...79
Sharing your Linux printer across Appletalk..79
Starting the appletalk software...80
Testing the appletalk software..80
Caveats of the appletalk software...80
More information..80

11.3 ATM...80
11.4 AX25 (AF_AX25)...81
11.5 DECNet..81

 Linux Networking−HOWTO:

iii

Table of Contents

11.6 FDDI..81
11.7 Frame Relay...82
11.8 IPX (AF_IPX)..85
11.9 NetRom (AF_NETROM)..86
11.10 Rose protocol (AF_ROSE)..86
11.11 SAMBA − ̀ NetBEUI', ̀ NetBios', ̀CIFS' support...86
11.12 STRIP support (Starmode Radio IP)...87
11.13 Token Ring..87
11.14 X.25..88
11.15 WaveLan Card...88
12.Cables and Cabling...88
12.1 Serial NULL Modem cable..88
12.2 Parallel port cable (PLIP cable)...89
12.3 10base2 (thin coax) Ethernet Cabling..90
12.4 Twisted Pair Ethernet Cable..90
13.Glossary of Terms used in this document...90
14.Authors..92
14.1 Current...92
14.2 Past...92
15.Copyright..93

 Linux Networking−HOWTO:

iv

Linux Networking−HOWTO:

Author: Joshua Drake poet@linuxports.com

v1.6.5, March 22, 2000

A www.linuxports.com document for the Linux Documentation Project

1.Introduction.

2.Document History

• 2.1 Feedback

3.How to use this HOWTO.

• 3.1 Conventions used in this document

4.General Information about Linux Networking.

• 4.1 Linux Networking Resources.
• 4.2 Where to get some non−linux−specific network information.

5.Generic Network Configuration Information.

• 5.1 What do I need to start ?
• 5.2 Where should I put the configuration commands ?
• 5.3 Creating your network interfaces.
• 5.4 Configuring a network interface. Kernels 2.0 and 2.2
• 5.5 Configuring your Name Resolver.
• 5.6 Configuring your loopback interface.
• 5.7 Routing.
• 5.8 Configuring your network servers and services.
• 5.9 Other miscellaneous network related configuration files.

Linux Networking−HOWTO: 1

mailto:poet@linuxports.com
http://www.linuxports.com/
http://www.linuxdoc.org
http://www.linuxdoc.org
http://www.linuxdoc.org

• 5.10 Network Security and access control.

6.Ethernet Information

• 6.1 Supported Ethernet Cards
• 6.2 General Ethernet Information
• 6.3 Using 2 or more Ethernet Cards in the same machine

7.IP Related Information

• 7.1 DHCP and DHCPD
• 7.2 DHCP Client Setup for users of LinuxConf
• 7.3 DHCP Server Setup for Linux
• 7.4 EQL − multiple line traffic equaliser
• 7.5 IP Accounting (for Linux−2.0)
• 7.6 IP Aliasing
• 7.7 IP Firewall (for Linux−2.0)
• 7.8 IPIP Encapsulation
• 7.9 IP Masquerade
• 7.10 IP Transparent Proxy
• 7.11 IPv6
• 7.12 Mobile IP
• 7.13 Multicast
• 7.14 Traffic Shaper − Changing allowed bandwidth

8.Advanced Networking with Kernel 2.2

• 8.1 The Basics
• 8.2 Adding a route with the new ip tools
• 8.3 Using NAT with Kernel 2.2

9.Kernel 2.2 IP Command Reference (Work In Progress)

• 9.1 ip

10.Using common PC hardware

• 10.1 ISDN
• 10.2 PLIP for Linux−2.0
• 10.3 PPP

 Linux Networking−HOWTO:

6.Ethernet Information 2

• 10.4 SLIP client − (Antiquated)

11.Other Network Technologies

• 11.1 ARCNet
• 11.2 Appletalk (AF_APPLETALK)
• 11.3 ATM
• 11.4 AX25 (AF_AX25)
• 11.5 DECNet
• 11.6 FDDI
• 11.7 Frame Relay
• 11.8 IPX (AF_IPX)
• 11.9 NetRom (AF_NETROM)
• 11.10 Rose protocol (AF_ROSE)
• 11.11 SAMBA − `NetBEUI', `NetBios', `CIFS' support.
• 11.12 STRIP support (Starmode Radio IP)
• 11.13 Token Ring
• 11.14 X.25
• 11.15 WaveLan Card

12.Cables and Cabling

• 12.1 Serial NULL Modem cable
• 12.2 Parallel port cable (PLIP cable)
• 12.3 10base2 (thin coax) Ethernet Cabling
• 12.4 Twisted Pair Ethernet Cable

13.Glossary of Terms used in this document.

14.Authors

• 14.1 Current
• 14.2 Past

15.Copyright.

 Linux Networking−HOWTO:

11.Other Network Technologies 3

1.Introduction.

New versions of this document can always be found first at http://www.linuxports.com/.

Previously the document was called the Net3/4 and Net−3 Howto's. I believe that may not have been obvious
enough for certain readers. So, I have renamed it the Networking−HOWTO.

This document has an auto contribute function located at LinuxPorts.Com.
(www.linuxports.com/howto/networking/updates.phtml) If you have something that you like like to add to
this document you may do so at LinuxPorts.Com page.
(www.linuxports.com/howto/networking/updates.phtml)

2.Document History

The original NET−FAQ was written by Matt Welsh and Terry Dawson to answer frequently asked questions
about networking for Linux at a time before the Linux Documentation Project had formally started. It covered
the very early development versions of the Linux Networking Kernel. The NET−2−HOWTO superceded the
NET−FAQ and was one of the original LDP HOWTO documents, it covered what was called version 2 and
later version 3 of the Linux kernel Networking software. This document in turn supercedes it and relates only
to version 4 of the Linux Networking Kernel or more specifically kernel releases 2.x and 2.2.x.

Previous versions of this document became quite large because of the enormous amount of material that fell
within its scope. To help reduce this problem a number of HOWTO's dealing with specific networking topics
have been produced. This document will provide pointers to them where relevant and cover those areas not
yet covered by other documents.

2.1 Feedback

We are always interested in feedback. Please contact us at: poet@linuxports.com.

Again, if you find anything erroneous or anything you would like to see added, please contact us.

3.How to use this HOWTO.

This document is organized top−down. The first sections include informative material and can be skipped if
you are not interested; what follows is a generic discussion of networking issues, and you must ensure you
understand this before proceeding to more specific parts. The rest, ``technology specific'' information is
grouped in three main sections: Ethernet and IP−related information, technologies pertaining to widespread
PC hardware and seldom−used technologies.

The suggested path through the document is thus the following:

Read the generic sections

 Linux Networking−HOWTO:

1.Introduction. 4

http://www.linuxports.com
http://www.linuxports.com/howto/networking/updates.phtml
http://www.linuxports.com/howto/networking/updates.phtml
mailto:poet@linuxports.com

These sections apply to every, or nearly every, technology described later and so are very important
for you to understand. On the other hand, I expect many of the readers to be already confident with
this material.

Consider your network

You should know how your network is, or will be, designed and exactly what hardware and
technology types you will be implementing.

Read the ``Ethernet and IP'' section if you are directly connected a LAN or the Internet

This section describes basic Ethernet configuration and the various features that Linux offers for IP
networks, like firewalling, advanced routing and so on.

Read the next section if you are interested in low−cost local networks or dial−up connections

The section describes PLIP, PPP, SLIP and ISDN, the widespread technologies used on personal
workstations.

Read the technology specific sections related to your requirements

If your needs differ from IP and/or common hardware, the final section covers details specific to
non−IP protocols and peculiar communication hardware.

Do the configuration work

You should actually try to configure your network and take careful note of any problems you have.

Look for further help if needed

If you experience problems that this document does not help you to resolve then read the section
related to where to get help or where to report bugs.

Have fun!

Networking is fun, enjoy it.

3.1 Conventions used in this document

No special convention is used here, but you must be warned about the way commands are shown. Following
the classic Unix documentation, any command you should type to your shell is prefixed by a prompt. This
howto shows "user%" as the prompt for commands that do not require superuser privileges, and "root#" as
the prompt for commands that need to run as root. I chose to use "root#" instead of a plain "#" to prevent

 Linux Networking−HOWTO:

3.1 Conventions used in this document 5

confusion with snapshots from shell scripts, where the hash mark is used to define comment lines.

When ``Kernel Compile Options'' are shown, they are represented in the format used by menuconfig. They
should be understandable even if you (like me) are not used to menuconfig. If you are in doubt about the
options' nesting, running the program once can't but help.

4.General Information about Linux Networking.

4.1 Linux Networking Resources.

There are a number of places where you can find good information about Linux networking.

There are a wealth of Consultants available. A searchable listing can be found at http://www.linuxports.com/

Alan Cox, the current maintainer of the Linux kernel networking code maintains a world wide web page that
contains highlights of current and new developments in linux Networking at: www.uk.linux.org.

There is a newsgroup in the Linux news hierarchy dedicated to networking and related matters, it is:
comp.os.linux.networking

There is a mailing list to which you can subscribe where you may ask questions relating to Linux networking.
To subscribe you should send a mail message:

 To: majordomo@vger.rutgers.edu
 Subject: anything at all
 Message:
 subscribe linux−net

Please remember when reporting any problem to include as much relevant detail about the problem as you
can. Specifically you should specify the versions of software that you are using, especially the kernel version,
the version of tools such as pppd/ or dip and the exact nature of the problem you are experiencing. This
means taking note of the exact syntax of any error messages you receive and of any commands that you are
issuing.

4.2 Where to get some non−linux−specific network
information.

If you are after some basic tutorial information on tcp/ip networking generally, then I recommend you take a
look at the following documents:

tcp/ip introduction

 Linux Networking−HOWTO:

4.General Information about Linux Networking. 6

http://www.linuxports.com/
http://www.uk.linux.org/NetNews.html
news:comp.os.linux.networking

this document comes as both a text version and a postscript version.

tcp/ip administration

this document comes as both a text version and a postscript version.

If you are after some more detailed information on tcp/ip networking then I highly recommend:

Internetworking with TCP/IP, Volume 1: principles, protocols and architecture, by Douglas
E. Comer, ISBN 0−13−227836−7, Prentice Hall publications, Third Edition, 1995.

If you are wanting to learn about how to write network applications in a Unix compatible environment then I
also highly recommend:

Unix Network Programming, by W. Richard Stevens, ISBN 0−13−949876−1, Prentice Hall
publications, 1990.

A second edition of this book is appearing on the bookshelves; the new book is made up of three volumes:
check Prenice−Hall's web site to probe further.

You might also try the comp.protocols.tcp−ip newsgroup.

An important source of specific technical information relating to the Internet and the tcp/ip suite of protocols
are RFC's. RFC is an acronym for `Request For Comment' and is the standard means of submitting and
documenting Internet protocol standards. There are many RFC repositories. Many of these sites are ftp sites
and other provide World Wide Web access with an associated search engine that allows you to search the
RFC database for particular keywords.

One possible source for RFC's is at Nexor RFC database.

5.Generic Network Configuration Information.

The following subsections you will pretty much need to know and understand before you actually try to
configure your network. They are fundamental principles that apply regardless of the exact nature of the
network you wish to deploy.

5.1 What do I need to start ?

Before you start building or configuring your network you will need some things. The most important of
these are:

Current Kernel source(Optional).

Please note:

The majority of current distributions come with networking enabled, therefore it may not be required to

 Linux Networking−HOWTO:

5.Generic Network Configuration Information. 7

ftp://athos.rutgers.edu/runet/tcp-ip-intro.doc
ftp://athos.rutgers.edu/runet/tcp-ip-intro.doc
ftp://athos.rutgers.edu/runet/tcp-ip-intro.ps
ftp://athos.rutgers.edu/runet/tcp-ip-intro.ps
ftp://athos.rutgers.edu/runet/tcp-ip-admin.doc
ftp://athos.rutgers.edu/runet/tcp-ip-admin.doc
ftp://athos.rutgers.edu/runet/tcp-ip-admin.ps
ftp://athos.rutgers.edu/runet/tcp-ip-admin.ps
http://www.phptr.com/
http://www.phptr.com/
http://www.phptr.com/
news:comp.protocols.tcp-ip
http://pubweb.nexor.co.uk/public/rfc/index/rfc.html
http://pubweb.nexor.co.uk/public/rfc/index/rfc.html
http://pubweb.nexor.co.uk/public/rfc/index/rfc.html

recompile the kernel. If you are running well known hardware you should be just fine. For example: 3COM
NIC, NE2000 NIC, or a Intel NIC. However if you find yourself in the position that you do need to update
the kernel, the following information is provided.

Because the kernel you are running now might not yet have support for the network types or cards that you
wish to use you will probably need the kernel source so that you can recompile the kernel with the
appropriate options.

For users of the major distributions such as Redhat, Caldera, Debian, or Suse this no longer holds true. As
long as you stay within the mainstream of hardware there should be no need to recompile your kernel unless
there is a very specific feature that you need.

You can always obtain the latest kernel source from ftp.cdrom.com. This is not the official site but they have
LOTS of bandwidth and capacity. The official site is kernel.org but please use the above if you can. Please
remember that ftp.kernel.org is seriously overloaded. Use a mirror.

Normally the kernel source will be untarred into the /usr/src/linux directory. For information on how
to apply patches and build the kernel you should read the Kernel−HOWTO. For information on how to
configure kernel modules you should read the ``Modules mini−HOWTO''. Also, the README file found in
the kernel sources and the Documentation directory are very informative for the brave reader.

Unless specifically stated otherwise, I recommend you stick with the standard kernel release (the one with the
even number as the second digit in the version number). Development release kernels (the ones with the odd
second digit) may have structural or other changes that may cause problems working with the other software
on your system. If you are uncertain that you could resolve those sorts of problems in addition to the potential
for there being other software errors, then don't use them.

IP Addresses, an Explanation.

Internet Protocol Addresses are composed of four bytes. The convention is to write addresses in what is
called `dotted decimal notation'. In this form each byte is converted to a decimal number (0−255) dropping
any leading zero's unless the number is zero and written with each byte separated by a `.' character. By
convention each interface of a host or router has an IP address. It is legal for the same IP address to be used
on each interface of a single machine in some circumstances but usually each interface will have its own
address.

Internet Protocol Networks are contiguous sequences of IP addresses. All addresses within a network have a
number of digits within the address in common. The portion of the address that is common amongst all
addresses within the network is called the `network portion' of the address. The remaining digits are called
the `host portion'. The number of bits that are shared by all addresses within a network is called the netmask
and it is role of the netmask to determine which addresses belong to the network it is applied to and which
don't. For example, consider the following:

 −−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−
 Host Address 192.168.110.23
 Network Mask 255.255.255.0
 Network Portion 192.168.110.
 Host portion .23
 −−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−
 Network Address 192.168.110.0

 Linux Networking−HOWTO:

IP Addresses, an Explanation. 8

ftp://ftp.cdrom.com/pub/linux/sunsite/kernel.org/pub/linux/kernel
Kernel-HOWTO.html

 Broadcast Address 192.168.110.255
 −−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−

Any address that is 'bitwise anded' with its netmask will reveal the address of the network it belongs to. The
network address is therefore always the lowest numbered address within the range of addresses on the
network and always has the host portion of the address coded all zeroes.

The broadcast address is a special address that every host on the network listens to in addition to its own
unique address. This address is the one that datagrams are sent to if every host on the network is meant to
receive it. Certain types of data like routing information and warning messages are transmitted to the
broadcast address so that every host on the network can receive it simultaneously. There are two commonly
used standards for what the broadcast address should be. The most widely accepted one is to use the highest
possible address on the network as the broadcast address. In the example above this would be
192.168.110.255. For some reason other sites have adopted the convention of using the network address
as the broadcast address. In practice it doesn't matter very much which you use but you must make sure that
every host on the network is configured with the same broadcast address.

For administrative reasons some time early in the development of the IP protocol some arbitrary groups of
addresses were formed into networks and these networks were grouped into what are called classes. These
classes provide a number of standard size networks that could be allocated. The ranges allocated are:

 −−
 | Network | Netmask | Network Addresses |
 | Class | | |
 −−
 | A | 255.0.0.0 | 0.0.0.0 − 127.255.255.255 |
 | B | 255.255.0.0 | 128.0.0.0 − 191.255.255.255 |
 | C | 255.255.255.0 | 192.0.0.0 − 223.255.255.255 |
 |Multicast| 240.0.0.0 | 224.0.0.0 − 239.255.255.255 |
 −−

What addresses you should use depends on exactly what it is that you are doing. You may have to use a
combination of the following activities to get all the addresses you need:

Installing a linux machine on an existing IP network

If you wish to install a linux machine onto an existing IP network then you should contact whoever
administers the network and ask them for the following information:

♦ Host IP Address
♦ IP network address
♦ IP broadcast address
♦ IP netmask
♦ Router address
♦ Domain Name Server Address

You should then configure your linux network device with those details. You can not make them up

 Linux Networking−HOWTO:

IP Addresses, an Explanation. 9

and expect your configuration to work.

Building a brand new network that will never connect to the Internet

If you are building a private network and you never intend that network to be connected to the
Internet then you can choose whatever addresses you like. However, for safety and consistency
reasons there have been some IP network addresses that have been reserved specifically for this
purpose. These are specified in RFC1597 and are as follows:

 −−−
 | RESERVED PRIVATE NETWORK ALLOCATIONS |
 −−−
 | Network | Netmask | Network Addresses |
 | Class | | |
 −−−
 | A | 255.0.0.0 | 10.0.0.0 − 10.255.255.255 |
 | B | 255.255.0.0 | 172.16.0.0 − 172.31.255.255 |
 | C | 255.255.255.0 | 192.168.0.0 − 192.168.255.255 |
 −−−

You should first decide how large you want your network to be and then choose as many of the
addresses as you require.

5.2 Where should I put the configuration commands ?

There are a few different approaches to Linux system boot procedures. After the kernel boots, it always
executes a program called `init'. The init program then reads its configuration file called
/etc/inittab and commences the boot process. There are a few different flavours of init around,
although everyone is now converging to the System V (Five) flavor, developed by Miguel van Smoorenburg.

Despite the fact that the init program is always the same, the setup of system boot is organized in a different
way by each distribution.

Usually the /etc/inittab file contains an entry looking something like:

 si::sysinit:/etc/init.d/boot

This line specifies the name of the shell script file that actually manages the boot sequence. This file is
somewhat equivalent to the AUTOEXEC.BAT file in MS−DOS.

There are usually other scripts that are called by the boot script and often the network is configured within
one of many of these.

The following table may be used as a guide for your system:

−−−

 Linux Networking−HOWTO:

5.2 Where should I put the configuration commands ? 10

Distrib. | Interface Config/Routing | Server Initialization
−−−
Debian | /etc/init.d/network | /etc/rc2.d/*
−−−
Slackware| /etc/rc.d/rc.inet1 | /etc/rc.d/rc.inet2
−−−
RedHat | /etc/rc.d/init.d/network | /etc/rc.d/rc3.d/*
−−−

Note that Debian and Red Hat use a whole directory to host scripts that fire up system services (and usually
information does not lie within these files, for example Red Hat systems store all of system configuration in
files under /etc/sysconfig, whence it is retrieved by boot scripts). If you want to grasp the details of the
boot process, my suggestion is to check /etc/inittab and the documentation that accompanies init. Linux
Journal is also going to publish an article about system initialization, and this document will point to it as
soon as it is available on the web.

Most modern distributions include a program that will allow you to configure many of the common sorts of
network interfaces. If you have one of these then you should see if it will do what you want before attempting
a manual configuration.

 −−−
 Distrib | Network configuration program
 −−−
 RedHat | /usr/bin/netcfg
 Slackware | /sbin/netconfig
 −−−

5.3 Creating your network interfaces.

In many Unix operating systems the network devices have appearances in the /dev directory. This is not so in
Linux. In Linux the network devices are created dynamically in software and do not require device files to be
present.

In the majority of cases the network device is automatically created by the device driver while it is initializing
and has located your hardware. For example, the ethernet device driver creates eth[0..n] interfaces
sequentially as it locates your ethernet hardware. The first ethernet card found becomes eth0, the second
eth1 etc.

In some cases though, notably slip and ppp, the network devices are created through the action of some user
program. The same sequential device numbering applies, but the devices are not created automatically at boot
time. The reason for this is that unlike ethernet devices, the number of active slip or ppp devices may vary
during the uptime of the machine. These cases will be covered in more detail in later sections.

 Linux Networking−HOWTO:

5.3 Creating your network interfaces. 11

5.4 Configuring a network interface. Kernels 2.0 and 2.2

When you have all of the programs you need and your address and network information you can configure
your network interfaces. When we talk about configuring a network interface we are talking about the process
of assigning appropriate addresses to a network device and to setting appropriate values for other
configurable parameters of a network device. The program most commonly used to do this is the
ifconfig (interface configure) command.

Typically you would use a command similar to the following:

 root# ifconfig eth0 192.168.0.1 netmask 255.255.255.0 up

In this case I'm configuring an ethernet interface `eth0' with the IP address `192.168.0.1' and a network
mask of `255.255.255.0'. The `up' that trails the command tells the interface that it should become
active, but can usually be omitted, as it is the default. To shutdown an interface, you can just call
``ifconfig eth0 down''.

The kernel assumes certain defaults when configuring interfaces. For example, you may specify the network
address and broadcast address for an interface, but if you don't, as in my example above, then the kernel will
make reasonable guesses as to what they should be based on the netmask you supply and if you don't supply a
netmask then on the network class of the IP address configured. In my example the kernel would assume that
it is a class−C network being configured on the interface and configure a network address of
`192.168.0.0' and a broadcast address of `192.168.0.255' for the interface.

There are many other options to the ifconfig command. The most important of these are:

up

this option activates an interface (and is the default).

down

this option deactivates an interface.

[−]arp

this option enables or disables use of the address resolution protocol on this interface

[−]allmulti

this option enables or disables the reception of all hardware multicast packets. Hardware
multicast enables groups of hosts to receive packets addressed to special destinations. This
may be of importance if you are using applications like desktop videoconferencing but is
normally not used.

mtu N

this parameter allows you to set the MTU of this device.

 Linux Networking−HOWTO:

5.4 Configuring a network interface. Kernels 2.0 and 2.2 12

netmask <addr>

this parameter allows you to set the network mask of the network this device belongs to.

irq <addr>

this parameter only works on certain types of hardware and allows you to set the IRQ of the
hardware of this device.

[−]broadcast [addr]

this parameter allows you to enable and set the accepting of datagrams destined to the
broadcast address, or to disable reception of these datagrams.

[−]pointopoint [addr]

this parameter allows you to set the address of the machine at the remote end of a point to
point link such as for slip or ppp.

hw <type <addr>

this parameter allows you to set the hardware address of certain types of network devices.
This is not often useful for ethernet, but is useful for other network types such as AX.25.

With the release of Kernel 2.2 there are a number of options available that are not listed above. Some of the
most interesting are tunneling and IPV6 options. The ifconfig paramaters for kernel 2.2 are listed below.

interface

The name of the interface. This is usually a driver name followed by a unit number, for
example eth0 for the first Ethernet interface.

up

This flag causes the interface to be activated. It is implicitly specified if an address is
assigned to the interface.

down

This flag causes the driver for this interface to be shut down.

[−]arp

Enable or disable the use of the ARP protocol on this interface.

[−]promisc

Enable or disable the promiscuous mode of the interface. If selected, all packets on the
network will be received by the interface.

[−]allmulti

 Linux Networking−HOWTO:

5.4 Configuring a network interface. Kernels 2.0 and 2.2 13

Enable or disable all−multicast mode. If selected, all multicast packets on the network will be
received by the interface.

metric N

This parameter sets the interface metric.

mtu N

This parameter sets the Maximum Transfer Unit (MTU) of an interface.

dstaddr addr

Set the remote IP address for a point−to−point link (such as PPP). This keyword is now
obsolete; use the pointopoint keyword instead.

netmask addr

Set the IP network mask for this interface. This value defaults to the usual class A, B or C
network mask (as derived from the interface IP address), but it can be set to any value.

add addr prefixlen

Add an IPv6 address to an interface.

del addr prefixlen

Remove an IPv6 address from an interface.

tunnel aa.bb.cc.dd

Create a new SIT (IPv6−in−IPv4) device, tunnelling to the given destination.

irq addr

Set the interrupt line used by this device. Not all devices can dynamically change their IRQ
set− ting.

io_addr addr

Set the start address in I/O space for this device.

mem_start addr

Set the start address for shared memory used by this device. Only a few devices need this.

media type

Set the physical port or medium type to be used by the device. Not all devices can change
this set− ting, and those that can vary in what values they support. Typical values for type are
10base2 (thin Ethernet), 10baseT (twisted−pair 10Mbps Ethernet), AUI (external transceiver)

 Linux Networking−HOWTO:

5.4 Configuring a network interface. Kernels 2.0 and 2.2 14

and so on. The special medium type of auto can be used to tell the driver to auto−sense the
media. Again, not all drivers can do this.

[−]broadcast [addr]

If the address argument is given, set the protocol broadcast address for this interface.
Otherwise, set (or clear) the IFF_BROADCAST flag for the interface.

[−]pointopoint [addr]

This keyword enables the point−to−point mode of an interface, meaning that it is a direct link
between two machines with nobody else listening on it. If the address argument is also given,
set the pro− tocol address of the other side of the link, just like the obsolete dstaddr keyword
does. Otherwise, set or clear the IFF_POINTOPOINT flag for the interface.

hw class address

Set the hardware address of this interface, if the device driver supports this operation. The
keyword must be followed by the name of the hardware class and the printable ASCII
equivalent of the hardware address. Hardware classes currently supported include ether
(Ethernet), ax25 (AMPR AX.25), ARCnet and netrom (AMPR NET/ROM).

multicast

Set the multicast flag on the interface. This should not normally be needed as the drivers set
the flag correctly themselves.

address

The IP address to be assigned to this interface.

txqueuelen length

Set the length of the transmit queue of the device. It is useful to set this to small values for
slower devices with a high latency (modem links, ISDN) to prevent fast bulk transfers from
disturbing inter− active traffic like telnet too much. You may use the ifconfig command on
any network interface. Some user programs such as pppd and dip automatically configure the
network devices as they create them, so manual use of ifconfig is unnecessary.

5.5 Configuring your Name Resolver.

The `Name Resolver' is a part of the linux standard library. Its prime function is to provide a service to
convert human−friendly hostnames like `ftp.funet.fi' into machine friendly IP addresses such as
128.214.248.6.

 Linux Networking−HOWTO:

5.5 Configuring your Name Resolver. 15

What's in a name ?

You will probably be familiar with the appearance of Internet host names, but may not understand how they
are constructed, or deconstructed. Internet domain names are hierarchical in nature, that is, they have a
tree−like structure. A `domain' is a family, or group of names. A `domain' may be broken down into
`subdomain'. A `toplevel domain' is a domain that is not a subdomain. The Top Level Domains are specified
in RFC−920. Some examples of the most common top level domains are:

COM

Commercial Organizations

EDU

Educational Organizations

GOV

Government Organizations

MIL

Military Organizations

ORG

Other organizations

NET

Internet−Related Organizations

Country Designator

these are two letters codes that represent a particular country.

For historical reasons most domains belonging to one of the non−country based top level domains were used
by organizations within the United States, although the United States also has its own country code `.us'.
This is not true any more for .com and .org domains, which are commonly used by non−us companies.

Each of these top level domains has subdomains. The top level domains based on country name are often next
broken down into subdomains based on the com, edu, gov, mil and org domains. So for example you end
up with: com.au and gov.au for commercial and government organizations in Australia; note that this is
not a general rule, as actual policies depend on the naming authority for each domain.

The next level of division usually represents the name of the organization. Further subdomains vary in nature,
often the next level of subdomain is based on the departmental structure of the organization but it may be
based on any criterion considered reasonable and meaningful by the network administrators for the
organization.

 Linux Networking−HOWTO:

What's in a name ? 16

The very left−most portion of the name is always the unique name assigned to the host machine and is called
the `hostname', the portion of the name to the right of the hostname is called the `domainname' and the
complete name is called the `Fully Qualified Domain Name'.

To use Terry's host as an example, the fully qualified domain name is
`perf.no.itg.telstra.com.au'. This means that the host name is `perf' and the domain name is
`no.itg.telstra.com.au'. The domain name is based on a top level domain based on his country,
Australia and as his email address belongs to a commercial organization, `.com' is there as the next level
domain. The name of the company is (was) `telstra' and their internal naming structure is based on
organizational structure, in this case the machine belongs to the Information Technology Group, Network
Operations section.

Usually, the names are fairly shorter; for example, my ISP is called ``systemy.it'' and my non−profit
organization is called ``linux.it'', without any com and org subdomain, so that my own host is just
called ``morgana.systemy.it'' and rubini@linux.it is a valid email address. Note that the owner
of a domain has the rights to register hostnames as well as subdomains; for example, the LUG I belong to
uses the domain pluto.linux.it, because the owners of linux.it agreed to open a subdomain for the
LUG.

What information you will need.

You will need to know what domain your hosts name will belong to. The name resolver software provides
this name translation service by making requests to a `Domain Name Server', so you will need to know the IP
address of a local nameserver that you can use.

There are three files you need to edit, I'll cover each of these in turn.

/etc/resolv.conf

The /etc/resolv.conf is the main configuration file for the name resolver code. Its format is quite
simple. It is a text file with one keyword per line. There are three keywords typically used, they are:

domain

this keyword specifies the local domain name.

search

this keyword specifies a list of alternate domain names to search for a hostname

nameserver

this keyword, which may be used many times, specifies an IP address of a domain name
server to query when resolving names

An example /etc/resolv.conf might look something like:

 domain maths.wu.edu.au
 search maths.wu.edu.au wu.edu.au

 Linux Networking−HOWTO:

What information you will need. 17

 nameserver 192.168.10.1
 nameserver 192.168.12.1

This example specifies that the default domain name to append to unqualified names (ie hostnames supplied
without a domain) is maths.wu.edu.au and that if the host is not found in that domain to also try the
wu.edu.au domain directly. Two nameservers entry are supplied, each of which may be called upon by the
name resolver code to resolve the name.

/etc/host.conf

The /etc/host.conf file is where you configure some items that govern the behaviour of the name
resolver code. The format of this file is described in detail in the `resolv+' man page. In nearly all
circumstances the following example will work for you:

 order hosts,bind
 multi on

This configuration tells the name resolver to check the /etc/hosts file before attempting to query a
nameserver and to return all valid addresses for a host found in the /etc/hosts file instead of just the first.

/etc/hosts

The /etc/hosts file is where you put the name and IP address of local hosts. If you place a host in this file
then you do not need to query the domain name server to get its IP Address. The disadvantage of doing this is
that you must keep this file up to date yourself if the IP address for that host changes. In a well managed
system the only hostnames that usually appear in this file are an entry for the loopback interface and the local
hosts name.

 # /etc/hosts
 127.0.0.1 localhost loopback
 192.168.0.1 this.host.name

You may specify more than one host name per line as demonstrated by the first entry, which is a standard
entry for the loopback interface.

Running a name server

If you want to run a local nameserver, you can do it easily. Please refer to the DNS−HOWTO and to any
documents included in your version of BIND (Berkeley Internet Name Domain).

 Linux Networking−HOWTO:

/etc/host.conf 18

DNS-HOWTO.html

5.6 Configuring your loopback interface.

The `loopback' interface is a special type of interface that allows you to make connections to yourself.
There are various reasons why you might want to do this, for example, you may wish to test some network
software without interfering with anybody else on your network. By convention the IP address `127.0.0.1'
has been assigned specifically for loopback. So no matter what machine you go to, if you open a telnet
connection to 127.0.0.1 you will always reach the local host.

Configuring the loopback interface is simple and you should ensure you do (but note that this task is usually
performed by the standard initialization scripts).

 root# ifconfig lo 127.0.0.1
 root# route add −host 127.0.0.1 lo

We'll talk more about the route command in the next section.

5.7 Routing.

Routing is a big topic. It is easily possible to write large volumes of text about it. Most of you will have fairly
simple routing requirements, some of you will not. I will cover some basic fundamentals of routing only. If
you are interested in more detailed information then I suggest you refer to the references provided at the start
of the document.

Let's start with a definition. What is IP routing ? Here is one that I'm using:

IP Routing is the process by which a host with multiple network connections decides where
to deliver IP datagrams it has received.

It might be useful to illustrate this with an example. Imagine a typical office router, it might have a PPP link
off the Internet, a number of ethernet segments feeding the workstations and another PPP link off to another
office. When the router receives a datagram on any of its network connections, routing is the mechanism that
it uses to determine which interface it should send the datagram to next. Simple hosts also need to route, all
Internet hosts have two network devices, one is the loopback interface described above and the other is the
one it uses to talk to the rest of the network, perhaps an ethernet, perhaps a PPP or SLIP serial interface.

Ok, so how does routing work ? Each host keeps a special list of routing rules, called a routing table. This
table contains rows which typically contain at least three fields, the first is a destination address, the second is
the name of the interface to which the datagram is to be routed and the third is optionally the IP address of
another machine which will carry the datagram on its next step through the network. In linux you can see this
table by using the following command:

 user% cat /proc/net/route

 Linux Networking−HOWTO:

5.6 Configuring your loopback interface. 19

or by using either of the following commands:

 user% /sbin/route −n
 user% netstat −r

The routing process is fairly simple: an incoming datagram is received, the destination address (who it is for)
is examined and compared with each entry in the table. The entry that best matches that address is selected
and the datagram is forwarded to the specified interface. If the gateway field is filled then the datagram is
forwarded to that host via the specified interface, otherwise the destination address is assumed to be on the
network supported by the interface.

To manipulate this table a special command is used. This command takes command line arguments and
converts them into kernel system calls that request the kernel to add, delete or modify entries in the routing
table. The command is called `route'.

A simple example. Imagine you have an ethernet network. You've been told it is a class−C network with an
address of 192.168.1.0. You've been supplied with an IP address of 192.168.1.10 for your use and
have been told that 192.168.1.1 is a router connected to the Internet.

The first step is to configure the interface as described earlier. You would use a command like:

 root# ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up

You now need to add an entry into the routing table to tell the kernel that datagrams for all hosts with
addresses that match 192.168.1.* should be sent to the ethernet device. You would use a command
similar to:

 root# route add −net 192.168.1.0 netmask 255.255.255.0 eth0

Note the use of the `−net' argument to tell the route program that this entry is a network route. Your other
choice here is a `−host' route which is a route that is specific to one IP address.

This route will enable you to establish IP connections with all of the hosts on your ethernet segment. But
what about all of the IP hosts that aren't on your ethernet segment ?

It would be a very difficult job to have to add routes to every possible destination network, so there is a
special trick that is used to simplify this task. The trick is called the `default' route. The default route
matches every possible destination, but poorly, so that if any other entry exists that matches the required
address it will be used instead of the default route. The idea of the default route is simply to enable
you to say "and everything else should go here". In the example I've contrived you would use an entry like:

 root# route add default gw 192.168.1.1 eth0

 Linux Networking−HOWTO:

5.6 Configuring your loopback interface. 20

The `gw' argument tells the route command that the next argument is the IP address, or name, of a gateway or
router machine which all datagrams matching this entry should be directed to for further routing.

So, your complete configuration would look like:

 root# ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up
 root# route add −net 192.168.1.0 netmask 255.255.255.0 eth0
 root# route add default gw 192.168.1.1 eth0

If you take a close look at your network `rc' files you will find that at least one of them looks very similar to
this. This is a very common configuration.

Let's now look at a slightly more complicated routing configuration. Let's imagine we are configuring the
router we looked at earlier, the one supporting the PPP link to the Internet and the lan segments feeding the
workstations in the office. Lets imagine the router has three ethernet segments and one PPP link. Our routing
configuration would look something like:

 root# route add −net 192.168.1.0 netmask 255.255.255.0 eth0
 root# route add −net 192.168.2.0 netmask 255.255.255.0 eth1
 root# route add −net 192.168.3.0 netmask 255.255.255.0 eth2
 root# route add default ppp0

Each of the workstations would use the simpler form presented above, only the router needs to specify each
of the network routes separately because for the workstations the default route mechanism will capture all
of them letting the router worry about splitting them up appropriately. You may be wondering why the
default route presented doesn't specify a `gw'. The reason for this is simple, serial link protocols such as PPP
and slip only ever have two hosts on their network, one at each end. To specify the host at the other end of the
link as the gateway is pointless and redundant as there is no other choice, so you do not need to specify a
gateway for these types of network connections. Other network types such as ethernet, arcnet or token ring do
require the gateway to be specified as these networks support large numbers of hosts on them.

So what does the routed program do ?

The routing configuration described above is best suited to simple network arrangements where there are only
ever single possible paths to destinations. When you have a more complex network arrangement things get a
little more complicated. Fortunately for most of you this won't be an issue.

The big problem with `manual routing' or `static routing' as described, is that if a machine or link fails in your
network then the only way you can direct your datagrams another way, if another way exists, is by manually
intervening and executing the appropriate commands. Naturally this is clumsy, slow, impractical and hazard
prone. Various techniques have been developed to automatically adjust routing tables in the event of network
failures where there are alternate routes, all of these techniques are loosely grouped by the term `dynamic
routing protocols'.

You may have heard of some of the more common dynamic routing protocols. The most common are
probably RIP (Routing Information Protocol) and OSPF (Open Shortest Path First Protocol). The Routing

 Linux Networking−HOWTO:

So what does the routed program do ? 21

Information Protocol is very common on small networks such as small−medium sized corporate networks or
building networks. OSPF is more modern and more capable at handling large network configurations and
better suited to environments where there is a large number of possible paths through the network. Common
implementations of these protocols are: `routed' − RIP and `gated' − RIP, OSPF and others. The `routed'
program is normally supplied with your Linux distribution or is included in the `NetKit' package detailed
above.

An example of where and how you might use a dynamic routing protocol might look something like the
following:

 192.168.1.0 / 192.168.2.0 /
 255.255.255.0 255.255.255.0
 − −
 | |
 | /−−−−−\ /−−−−−\ |
 | | |ppp0 // ppp0| | |
eth0 |−−−| A |−−−−−−//−−−−−−−−−| B |−−−| eth0
 | | | // | | |
 | \−−−−−/ \−−−−−/ |
 | \ ppp1 ppp1 / |
 − \ / −
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 \ /
 ppp0\ /ppp1
 /−−−−−\
 | |
 | C |
 | |
 \−−−−−/
 |eth0
 |
 |−−−−−−−−−|
 192.168.3.0 /
 255.255.255.0

We have three routers A, B and C. Each supports one ethernet segment with a Class C IP network (netmask
255.255.255.0). Each router also has a PPP link to each of the other routers. The network forms a triangle.

It should be clear that the routing table at router A could look like:

 root# route add −net 192.168.1.0 netmask 255.255.255.0 eth0
 root# route add −net 192.168.2.0 netmask 255.255.255.0 ppp0
 root# route add −net 192.168.3.0 netmask 255.255.255.0 ppp1

This would work just fine until the link between router A and B should fail. If that link failed then with the

 Linux Networking−HOWTO:

So what does the routed program do ? 22

routing entry shown above hosts on the ethernet segment of A could not reach hosts on the ethernet segment
on B because their datagram would be directed to router A's ppp0 link which is broken. They could still
continue to talk to hosts on the ethernet segment of C and hosts on the C's ethernet segment could still talk to
hosts on B's ethernet segment because the link between B and C is still intact.

But wait, if A can talk to C and C can still talk to B, why shouldn't A route its datagrams for B via C and let
C send them to B ? This is exactly the sort of problem that dynamic routing protocols like RIP were designed
to solve. If each of the routers A, B and C were running a routing daemon then their routing tables would be
automatically adjusted to reflect the new state of the network should any one of the links in the network fail.
To configure such a network is simple, at each router you need only do two things. In this case for Router A:

 root# route add −net 192.168.1.0 netmask 255.255.255.0 eth0
 root# /usr/sbin/routed

The `routed' routing daemon automatically finds all active network ports when it starts and sends and listens
for messages on each of the network devices to allow it to determine and update the routing table on the host.

This has been a very brief explanation of dynamic routing and where you would use it. If you want more
information then you should refer to the suggested references listed at the top of the document.

The important points relating to dynamic routing are:

1. You only need to run a dynamic routing protocol daemon when your Linux machine has the
possibility of selecting multiple possible routes to a destination. An example of this would be if you
plan to use IP Masquerading.

2. The dynamic routing daemon will automatically modify your routing table to adjust to changes in
your network.

3. RIP is suited to small to medium sized networks.

5.8 Configuring your network servers and services.

Network servers and services are those programs that allow a remote user to make user of your Linux
machine. Server programs listen on network ports. Network ports are a means of addressing a particular
service on any particular host and are how a server knows the difference between an incoming telnet
connection and an incoming ftp connection. The remote user establishes a network connection to your
machine and the server program, the network daemon program, listening on that port accepts the connection
and executes. There are two ways that network daemons may operate. Both are commonly employed in
practice. The two ways are:

standalone

the network daemon program listens on the designated network port and when an incoming
connection is made it manages the network connection itself to provide the service.

slave to the inetd server

 Linux Networking−HOWTO:

5.8 Configuring your network servers and services. 23

the inetd server is a special network daemon program that specializes in managing incoming network
connections. It has a configuration file which tells it what program needs to be run when an incoming
connection is received. Any service port may be configured for either of the tcp or udp protcols. The
ports are described in another file that we will talk about soon.

There are two important files that we need to configure. They are the /etc/services file which assigns
names to port numbers and the /etc/inetd.conf file which is the configuration file for the
inetd network daemon.

/etc/services

The /etc/services file is a simple database that associates a human friendly name to a machine friendly
service port. Its format is quite simple. The file is a text file with each line representing and entry in the
database. Each entry is comprised of three fields separated by any number of whitespace (tab or space)
characters. The fields are:

 name port/protocol aliases # comment

name

a single word name that represents the service being described.

port/protocol

this field is split into two subfields.

port

a number that specifies the port number the named service will be available on. Most of the common
services have assigned service numbers. These are described in RFC−1340.

protocol

this subfield may be set to either tcp or udp. It is important to note that an entry of 18/tcp is very
different from an entry of 18/udp and that there is no technical reason why the same service needs
to exist on both. Normally common sense prevails and it is only if a particular service is available via
both tcp and udp that you will see an entry for both.

aliases

other names that may be used to refer to this service entry.

Any text appearing in a line after a `#' character is ignored and treated as a comment.

 Linux Networking−HOWTO:

/etc/services 24

An example /etc/services file.

All modern linux distributions provide a good /etc/services file. Just in case you happen to be building
a machine from the ground up, here is a copy of the /etc/services file supplied with an old
Debian distribution:

/etc/services:
$Id: services,v 1.3 1996/05/06 21:42:37 tobias Exp $
#
Network services, Internet style
#
Note that it is presently the policy of IANA to assign a single well−known
port number for both TCP and UDP; hence, most entries here have two entries
even if the protocol doesn't support UDP operations.
Updated from RFC 1340, ``Assigned Numbers'' (July 1992). Not all ports
are included, only the more common ones.

tcpmux 1/tcp # TCP port service multiplexer
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp quote
msp 18/tcp # message send protocol
msp 18/udp # message send protocol
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp−data 20/tcp
ftp 21/tcp
ssh 22/tcp # SSH Remote Login Protocol
ssh 22/udp # SSH Remote Login Protocol
telnet 23/tcp
24 − private
smtp 25/tcp mail
26 − unassigned
time 37/tcp timserver
time 37/udp timserver
rlp 39/udp resource # resource location
nameserver 42/tcp name # IEN 116
whois 43/tcp nicname
re−mail−ck 50/tcp # Remote Mail Checking Protocol
re−mail−ck 50/udp # Remote Mail Checking Protocol
domain 53/tcp nameserver # name−domain server
domain 53/udp nameserver
mtp 57/tcp # deprecated
bootps 67/tcp # BOOTP server
bootps 67/udp
bootpc 68/tcp # BOOTP client
bootpc 68/udp
tftp 69/udp
gopher 70/tcp # Internet Gopher
gopher 70/udp
rje 77/tcp netrjs
finger 79/tcp
www 80/tcp http # WorldWideWeb HTTP

 Linux Networking−HOWTO:

An example /etc/services file. 25

http://www.debian.org/

www 80/udp # HyperText Transfer Protocol
link 87/tcp ttylink
kerberos 88/tcp kerberos5 krb5 # Kerberos v5
kerberos 88/udp kerberos5 krb5 # Kerberos v5
supdup 95/tcp
100 − reserved
hostnames 101/tcp hostname # usually from sri−nic
iso−tsap 102/tcp tsap # part of ISODE.
csnet−ns 105/tcp cso−ns # also used by CSO name server
csnet−ns 105/udp cso−ns
rtelnet 107/tcp # Remote Telnet
rtelnet 107/udp
pop−2 109/tcp postoffice # POP version 2
pop−2 109/udp
pop−3 110/tcp # POP version 3
pop−3 110/udp
sunrpc 111/tcp portmapper # RPC 4.0 portmapper TCP
sunrpc 111/udp portmapper # RPC 4.0 portmapper UDP
auth 113/tcp authentication tap ident
sftp 115/tcp
uucp−path 117/tcp
nntp 119/tcp readnews untp # USENET News Transfer Protocol
ntp 123/tcp
ntp 123/udp # Network Time Protocol
netbios−ns 137/tcp # NETBIOS Name Service
netbios−ns 137/udp
netbios−dgm 138/tcp # NETBIOS Datagram Service
netbios−dgm 138/udp
netbios−ssn 139/tcp # NETBIOS session service
netbios−ssn 139/udp
imap2 143/tcp # Interim Mail Access Proto v2
imap2 143/udp
snmp 161/udp # Simple Net Mgmt Proto
snmp−trap 162/udp snmptrap # Traps for SNMP
cmip−man 163/tcp # ISO mgmt over IP (CMOT)
cmip−man 163/udp
cmip−agent 164/tcp
cmip−agent 164/udp
xdmcp 177/tcp # X Display Mgr. Control Proto
xdmcp 177/udp
nextstep 178/tcp NeXTStep NextStep # NeXTStep window
nextstep 178/udp NeXTStep NextStep # server
bgp 179/tcp # Border Gateway Proto.
bgp 179/udp
prospero 191/tcp # Cliff Neuman's Prospero
prospero 191/udp
irc 194/tcp # Internet Relay Chat
irc 194/udp
smux 199/tcp # SNMP Unix Multiplexer
smux 199/udp
at−rtmp 201/tcp # AppleTalk routing
at−rtmp 201/udp
at−nbp 202/tcp # AppleTalk name binding
at−nbp 202/udp
at−echo 204/tcp # AppleTalk echo
at−echo 204/udp
at−zis 206/tcp # AppleTalk zone information
at−zis 206/udp
z3950 210/tcp wais # NISO Z39.50 database
z3950 210/udp wais
ipx 213/tcp # IPX
ipx 213/udp

 Linux Networking−HOWTO:

An example /etc/services file. 26

imap3 220/tcp # Interactive Mail Access
imap3 220/udp # Protocol v3
ulistserv 372/tcp # UNIX Listserv
ulistserv 372/udp
#
UNIX specific services
#
exec 512/tcp
biff 512/udp comsat
login 513/tcp
who 513/udp whod
shell 514/tcp cmd # no passwords used
syslog 514/udp
printer 515/tcp spooler # line printer spooler
talk 517/udp
ntalk 518/udp
route 520/udp router routed # RIP
timed 525/udp timeserver
tempo 526/tcp newdate
courier 530/tcp rpc
conference 531/tcp chat
netnews 532/tcp readnews
netwall 533/udp # −for emergency broadcasts
uucp 540/tcp uucpd # uucp daemon
remotefs 556/tcp rfs_server rfs # Brunhoff remote filesystem
klogin 543/tcp # Kerberized `rlogin' (v5)
kshell 544/tcp krcmd # Kerberized `rsh' (v5)
kerberos−adm 749/tcp # Kerberos `kadmin' (v5)
#
webster 765/tcp # Network dictionary
webster 765/udp
#
From ``Assigned Numbers'':
#
#> The Registered Ports are not controlled by the IANA and on most systems
#> can be used by ordinary user processes or programs executed by ordinary
#> users.
#
#> Ports are used in the TCP [45,106] to name the ends of logical
#> connections which carry long term conversations. For the purpose of
#> providing services to unknown callers, a service contact port is
#> defined. This list specifies the port used by the server process as its
#> contact port. While the IANA can not control uses of these ports it
#> does register or list uses of these ports as a convenience to the
#> community.
#
ingreslock 1524/tcp
ingreslock 1524/udp
prospero−np 1525/tcp # Prospero non−privileged
prospero−np 1525/udp
rfe 5002/tcp # Radio Free Ethernet
rfe 5002/udp # Actually uses UDP only
bbs 7000/tcp # BBS service
#
#
Kerberos (Project Athena/MIT) services
Note that these are for Kerberos v4 and are unofficial. Sites running
v4 should uncomment these and comment out the v5 entries above.
#
kerberos4 750/udp kdc # Kerberos (server) udp
kerberos4 750/tcp kdc # Kerberos (server) tcp
kerberos_master 751/udp # Kerberos authentication

 Linux Networking−HOWTO:

An example /etc/services file. 27

kerberos_master 751/tcp # Kerberos authentication
passwd_server 752/udp # Kerberos passwd server
krb_prop 754/tcp # Kerberos slave propagation
krbupdate 760/tcp kreg # Kerberos registration
kpasswd 761/tcp kpwd # Kerberos "passwd"
kpop 1109/tcp # Pop with Kerberos
knetd 2053/tcp # Kerberos de−multiplexor
zephyr−srv 2102/udp # Zephyr server
zephyr−clt 2103/udp # Zephyr serv−hm connection
zephyr−hm 2104/udp # Zephyr hostmanager
eklogin 2105/tcp # Kerberos encrypted rlogin
#
Unofficial but necessary (for NetBSD) services
#
supfilesrv 871/tcp # SUP server
supfiledbg 1127/tcp # SUP debugging
#
Datagram Delivery Protocol services
#
rtmp 1/ddp # Routing Table Maintenance Protocol
nbp 2/ddp # Name Binding Protocol
echo 4/ddp # AppleTalk Echo Protocol
zip 6/ddp # Zone Information Protocol
#
Debian GNU/Linux services
rmtcfg 1236/tcp # Gracilis Packeten remote config server
xtel 1313/tcp # french minitel
cfinger 2003/tcp # GNU Finger
postgres 4321/tcp # POSTGRES
mandelspawn 9359/udp mandelbrot # network mandelbrot

Local services

In the real world, the actual file is always growing as new services are being created. If you fear your own
copy is incomplete, I'd suggest to copy a new /etc/services from a recent distribution.

/etc/inetd.conf

The /etc/inetd.conf file is the configuration file for the inetd server daemon. Its function is to tell
inetd what to do when it receives a connection request for a particular service. For each service that you wish
to accept connections for you must tell inetd what network server daemon to run and how to run it.

Its format is also fairly simple. It is a text file with each line describing a service that you wish to provide.
Any text in a line following a `#' is ignored and considered a comment. Each line contains seven fields
separated by any number of whitespace (tab or space) characters. The general format is as follows:

 service socket_type proto flags user server_path server_args

service

is the service relevant to this configuration as taken from the /etc/services file.

 Linux Networking−HOWTO:

/etc/inetd.conf 28

socket_type

this field describes the type of socket that this entry will consider relevant, allowable values are:
stream, dgram, raw, rdm, or seqpacket. This is a little technical in nature, but as a rule of
thumb nearly all tcp based services use stream and nearly all udp based services use dgram. It is
only very special types of server daemons that would use any of the other values.

proto

the protocol to considered valid for this entry. This should match the appropriate entry in the
/etc/services file and will typically be either tcp or udp. Sun RPC (Remote Procedure Call)
based servers will use rpc/tcp or rpc/udp.

flags

there are really only two possible settings for this field. This field setting tells inetd whether the
network server program frees the socket after it has been started and therefore whether inetd can start
another one on the next connection request, or whether inetd should wait and assume that any server
daemon already running will handle the new connection request. Again this is a little tricky to work
out, but as a rule of thumb all tcp servers should have this entry set to nowait and most
udp servers should have this entry set to wait. Be warned there are some notable exceptions to this,
so let the example guide you if you are not sure.

user

this field describes which user account from /etc/passwd will be set as the owner of the network
daemon when it is started. This is often useful if you want to safeguard against security risks. You
can set the user of an entry to the nobody user so that if the network server security is breached the
possible damage is minimized. Typically this field is set to root though, because many servers
require root privileges in order to function correctly.

server_path

this field is pathname to the actual server program to execute for this entry.

server_args

this field comprises the rest of the line and is optional. This field is where you place any command
line arguments that you wish to pass to the server daemon program when it is launched.

 Linux Networking−HOWTO:

/etc/inetd.conf 29

An example /etc/inetd.conf

As for the /etc/services file all modern distributions will include a good /etc/inetd.conf file for
you to work with. Here, for completeness is the /etc/inetd.conf file from the Debian distribution.

/etc/inetd.conf: see inetd(8) for further informations.
#
Internet server configuration database
#
#
Modified for Debian by Peter Tobias <tobias@et−inf.fho−emden.de>
#
<service_name> <sock_type> <proto> <flags> <user> <server_path> <args>
#
Internal services
#
#echo stream tcp nowait root internal
#echo dgram udp wait root internal
discard stream tcp nowait root internal
discard dgram udp wait root internal
daytime stream tcp nowait root internal
daytime dgram udp wait root internal
#chargen stream tcp nowait root internal
#chargen dgram udp wait root internal
time stream tcp nowait root internal
time dgram udp wait root internal
#
These are standard services.
#
telnet stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.telnetd
ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.ftpd
#fsp dgram udp wait root /usr/sbin/tcpd /usr/sbin/in.fspd
#
Shell, login, exec and talk are BSD protocols.
#
shell stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rshd
login stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rlogind
#exec stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rexecd
talk dgram udp wait root /usr/sbin/tcpd /usr/sbin/in.talkd
ntalk dgram udp wait root /usr/sbin/tcpd /usr/sbin/in.ntalkd
#
Mail, news and uucp services.
#
smtp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.smtpd
#nntp stream tcp nowait news /usr/sbin/tcpd /usr/sbin/in.nntpd
#uucp stream tcp nowait uucp /usr/sbin/tcpd /usr/lib/uucp/uucico
#comsat dgram udp wait root /usr/sbin/tcpd /usr/sbin/in.comsat
#
Pop et al
#
#pop−2 stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.pop2d
#pop−3 stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.pop3d
#
`cfinger' is for the GNU finger server available for Debian. (NOTE: The
current implementation of the `finger' daemon allows it to be run as `root'.)
#
#cfinger stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.cfingerd
#finger stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.fingerd
#netstat stream tcp nowait nobody /usr/sbin/tcpd /bin/netstat
#systat stream tcp nowait nobody /usr/sbin/tcpd /bin/ps −auwwx

 Linux Networking−HOWTO:

An example /etc/inetd.conf 30

http://www.debian.org/

#
Tftp service is provided primarily for booting. Most sites
run this only on machines acting as "boot servers."
#
#tftp dgram udp wait nobody /usr/sbin/tcpd /usr/sbin/in.tftpd
#tftp dgram udp wait nobody /usr/sbin/tcpd /usr/sbin/in.tftpd /boot
#bootps dgram udp wait root /usr/sbin/bootpd bootpd −i −t 120
#
Kerberos authenticated services (these probably need to be corrected)
#
#klogin stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rlogind −k
#eklogin stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rlogind −k −x
#kshell stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rshd −k
#
Services run ONLY on the Kerberos server (these probably need to be corrected)
#
#krbupdate stream tcp nowait root /usr/sbin/tcpd /usr/sbin/registerd
#kpasswd stream tcp nowait root /usr/sbin/tcpd /usr/sbin/kpasswdd
#
RPC based services
#
#mountd/1 dgram rpc/udp wait root /usr/sbin/tcpd /usr/sbin/rpc.mountd
#rstatd/1−3 dgram rpc/udp wait root /usr/sbin/tcpd /usr/sbin/rpc.rstatd
#rusersd/2−3 dgram rpc/udp wait root /usr/sbin/tcpd /usr/sbin/rpc.rusersd
#walld/1 dgram rpc/udp wait root /usr/sbin/tcpd /usr/sbin/rpc.rwalld
#
End of inetd.conf.
ident stream tcp nowait nobody /usr/sbin/identd identd −i

5.9 Other miscellaneous network related configuration files.

There are a number of miscellaneous files relating to network configuration under linux that you might be
interested in. You may never have to modify these files, but it is worth describing them so you know what
they contain and what they are for.

/etc/protocols

The /etc/protocols file is a database that maps protocol id numbers against protocol names. This is
used by programmers to allow them to specify protocols by name in their programs and also by some
programs such as tcpdump to allow them to display names instead of numbers in their output. The general
syntax of the file is:

 protocolname number aliases

The /etc/protocols file supplied with the Debian distribution is as follows:

/etc/protocols:
$Id: protocols,v 1.1 1995/02/24 01:09:41 imurdock Exp $
#
Internet (IP) protocols
#

 Linux Networking−HOWTO:

5.9 Other miscellaneous network related configuration files. 31

http://www.debian.org/

from: @(#)protocols 5.1 (Berkeley) 4/17/89
#
Updated for NetBSD based on RFC 1340, Assigned Numbers (July 1992).

ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol
igmp 2 IGMP # Internet Group Management
ggp 3 GGP # gateway−gateway protocol
ipencap 4 IP−ENCAP # IP encapsulated in IP (officially ``IP'')
st 5 ST # ST datagram mode
tcp 6 TCP # transmission control protocol
egp 8 EGP # exterior gateway protocol
pup 12 PUP # PARC universal packet protocol
udp 17 UDP # user datagram protocol
hmp 20 HMP # host monitoring protocol
xns−idp 22 XNS−IDP # Xerox NS IDP
rdp 27 RDP # "reliable datagram" protocol
iso−tp4 29 ISO−TP4 # ISO Transport Protocol class 4
xtp 36 XTP # Xpress Tranfer Protocol
ddp 37 DDP # Datagram Delivery Protocol
idpr−cmtp 39 IDPR−CMTP # IDPR Control Message Transport
rspf 73 RSPF # Radio Shortest Path First.
vmtp 81 VMTP # Versatile Message Transport
ospf 89 OSPFIGP # Open Shortest Path First IGP
ipip 94 IPIP # Yet Another IP encapsulation
encap 98 ENCAP # Yet Another IP encapsulation

/etc/networks

The /etc/networks file has a similar function to that of the /etc/hosts file. It provides a simple
database of network names against network addresses. Its format differs in that there may be only two fields
per line and that the fields are coded as:

 networkname networkaddress

An example might look like:

 loopnet 127.0.0.0
 localnet 192.168.0.0
 amprnet 44.0.0.0

When you use commands like the route command, if a destination is a network and that network has an entry
in the /etc/networks file then the route command will display that network name instead of its address.

5.10 Network Security and access control.

Let me start this section by warning you that securing your machine and network against malicious attack is a
complex art. I do not consider myself an expert in this field at all and while the following mechanisms I
describe will help, if you are serious about security then I recommend you do some research of your own into

 Linux Networking−HOWTO:

/etc/networks 32

the subject. There are many good references on the Internet relating to the subject, including the
Security−HOWTO

An important rule of thumb is: `Don't run servers you don't intend to use'. Many distributions come
configured with all sorts of services configured and automatically started. To ensure even a minimum level of
safety you should go through your /etc/inetd.conf file and comment out (place a `#' at the start of the
line) any entries for services you don't intend to use. Good candidates are services such as: shell, login,
exec, uucp, ftp and informational services such as finger, netstat and systat.

There are all sorts of security and access control mechanisms, I'll describe the most elementary of them.

/etc/ftpusers

The /etc/ftpusers file is a simple mechanism that allows you to deny certain users from logging into
your machine via ftp. The /etc/ftpusers file is read by the ftp daemon program (ftpd) when an
incoming ftp connection is received. The file is a simple list of those users who are disallowed from logging
in. It might looks something like:

 # /etc/ftpusers − users not allowed to login via ftp
 root
 uucp
 bin
 mail

/etc/securetty

The /etc/securetty file allows you to specify which tty devices root is allowed to login on. The
/etc/securetty file is read by the login program (usually /bin/login). Its format is a list of the tty
devices names allowed, on all others root login is disallowed:

 # /etc/securetty − tty's on which root is allowed to login
 tty1
 tty2
 tty3
 tty4

The tcpd hosts access control mechanism.

The tcpd program you will have seen listed in the same /etc/inetd.conf provides logging and access
control mechanisms to services it is configured to protect.

When it is invoked by the inetd program it reads two files containing access rules and either allows or denies
access to the server it is protecting accordingly.

It will search the rules files until the first match is found. If no match is found then it assumes that access
should be allowed to anyone. The files it searches in sequence are: /etc/hosts.allow,

 Linux Networking−HOWTO:

/etc/ftpusers 33

Security-HOWTO.html

/etc/hosts.deny. I'll describe each of these in turn. For a complete description of this facility you
should refer to the appropriate man pages (hosts_access(5) is a good starting point).

/etc/hosts.allow

The /etc/hosts.allow file is a configuration file of the /usr/sbin/tcpd program. The
hosts.allow file contains rules describing which hosts are allowed access to a service on your machine.

The file format is quite simple:

 # /etc/hosts.allow
 #
 # <service list>: <host list> [: command]

service list

is a comma delimited list of server names that this rule applies to. Example server names are: ftpd,
telnetd and fingerd.

host list

is a comma delimited list of host names. You may also use IP addresses here. You may additionally
specify hostnames or addresses using wildcard characters to match groups of hosts. Examples
include: gw.vk2ktj.ampr.org to match a specific host, .uts.edu.au to match any hostname
ending in that string, 44. to match any IP address commencing with those digits. There are some
special tokens to simplify configuration, some of these are: ALL matches every host, LOCAL matches
any host whose name does not contain a `.' ie is in the same domain as your machine and
PARANOID matches any host whose name does not match its address (name spoofing). There is one
last token that is also useful. The EXCEPT token allows you to provide a list with exceptions. This
will be covered in an example later.

command

is an optional parameter. This parameter is the full pathname of a command that would be executed
everytime this rule is matched. It could for example run a command that would attempt to identify
who is logged onto the connecting host, or to generate a mail message or some other warning to a
system administrator that someone is attempting to connect. There are a number of expansions that
may be included, some common examples are: %h expands to the name of the connecting host or
address if it doesn't have a name, %d the daemon name being called.

An example:

 # /etc/hosts.allow
 #
 # Allow mail to anyone

 Linux Networking−HOWTO:

/etc/hosts.allow 34

 in.smtpd: ALL
 # All telnet and ftp to only hosts within my domain and my host at home.
 telnetd, ftpd: LOCAL, myhost.athome.org.au
 # Allow finger to anyone but keep a record of who they are.
 fingerd: ALL: (finger @%h | mail −s "finger from %h" root)

/etc/hosts.deny

The /etc/hosts.deny file is a configuration file of the /usr/sbin/tcpd program. The hosts.deny file
contains rules describing which hosts are disallowed access to a service on your machine.

A simple sample would look something like this:

 # /etc/hosts.deny
 #
 # Disallow all hosts with suspect hostnames
 ALL: PARANOID
 #
 # Disallow all hosts.
 ALL: ALL

The PARANOID entry is really redundant because the other entry traps everything in any case. Either of these
entry would make a reasonable default depending on your particular requirement.

Having an ALL: ALL default in the /etc/hosts.deny and then specifically enabling on those services
and hosts that you want in the /etc/hosts.allow file is the safest configuration.

/etc/hosts.equiv

The hosts.equiv file is used to grant certain hosts and users access rights to accounts on your machine
without having to supply a password. This is useful in a secure environment where you control all machines,
but is a security hazard otherwise. Your machine is only as secure as the least secure of the trusted hosts. To
maximize security, don't use this mechanism and encourage your users not to use the .rhosts file as well.

Configure your ftp daemon properly.

Many sites will be interested in running an anonymous ftp server to allow other people to upload and
download files without requiring a specific userid. If you decide to offer this facility make sure you configure
the ftp daemon properly for anonymous access. Most man pages for ftpd(8) describe in some length how
to go about this. You should always ensure that you follow these instructions. An important tip is to not use a
copy of your /etc/passwd file in the anonymous account /etc directory, make sure you strip out all
account details except those that you must have, otherwise you will be vulnerable to brute force password
cracking techniques.

 Linux Networking−HOWTO:

/etc/hosts.deny 35

Network Firewalling.

Not allowing datagrams to even reach your machine or servers is an excellent means of security. This is
covered in depth in the Firewall−HOWTO, and (more concisely) in a later section of this document.

Other suggestions.

Here are some other, potentially religious suggestions for you to consider.

sendmail

despite its popularity the sendmail daemon appears with frightening regularity on security warning
announcements. Its up to you, but I choose not to run it.

NFS and other Sun RPC services

be wary of these. There are all sorts of possible exploits for these services. It is difficult finding an
option to services like NFS, but if you configure them, make sure you are careful with who you allow
mount rights to.

6.Ethernet Information

This section covers information specific to Ethernet and the configuring of Ethernet Cards.

6.1 Supported Ethernet Cards

3Com

• 3Com 3c501 − `avoid like the plague'' (3c501 driver)
• 3Com 3c503 (3c503 driver), 3c505 (3c505 driver), 3c507 (3c507 driver), 3c509/3c509B (ISA) /

3c579 (EISA)
• 3Com Etherlink III Vortex Ethercards (3c590, 3c592, 3c595, 3c597) (PCI), 3Com Etherlink XL

Boomerang (3c900, 3c905) (PCI) and Cyclone (3c905B, 3c980) Ethercards (3c59x driver) and 3Com
Fast EtherLink Ethercard (3c515) (ISA) (3c515 driver)

• 3Com 3ccfe575 Cyclone Cardbus (3c59x driver)
• 3Com 3c575 series Cardbus (3c59x driver) (ALL PCMCIA ??)

 Linux Networking−HOWTO:

Network Firewalling. 36

Firewall-HOWTO.html

AMD, ATT, Allied Telesis, Ansel, Apricot

• AMD LANCE (79C960) / PCnet−ISA/PCI (AT1500, HP J2405A, NE1500/NE2100)
• ATT GIS WaveLAN
• Allied Telesis AT1700
• Allied Telesis LA100PCI−T
• Allied Telesyn AT2400T/BT ("ne" module)
• Ansel Communications AC3200 (EISA)
• Apricot Xen−II / 82596

Cabletron, Cogent, Crystal Lan

• Cabletron E21xx
• Cogent EM110
• Crystal Lan CS8920, Cs8900

Danpex, DEC, Digi, DLink

• Danpex EN−9400
• DEC DE425 (EISA) / DE434/DE435 (PCI) / DE450/DE500 (DE4x5 driver)
• DEC DE450/DE500−XA (dc21x4x) (Tulip driver)
• DEC DEPCA and EtherWORKS
• DEC EtherWORKS 3 (DE203, DE204, DE205)
• DECchip DC21x4x "Tulip"
• DEC QSilver's (Tulip driver)
• Digi International RightSwitch
• DLink DE−220P, DE−528CT, DE−530+, DFE−500TX, DFE−530TX

Fujitsu, HP, ICL, Intel

• Fujitsu FMV−181/182/183/184
• HP PCLAN (27245 and 27xxx series)
• HP PCLAN PLUS (27247B and 27252A)
• HP 10/100VG PCLAN (J2577, J2573, 27248B, J2585) (ISA/EISA/PCI)
• ICL EtherTeam 16i / 32 (EISA)
• Intel EtherExpress
• Intel EtherExpress Pro

KTI, Macromate, NCR NE2000/1000, Netgear, New Media

• KTI ET16/P−D2, ET16/P−DC ISA (work jumperless and with hardware−configuration options)
• Macromate MN−220P (PnP or NE2000 mode)
• NCR WaveLAN

 Linux Networking−HOWTO:

AMD, ATT, Allied Telesis, Ansel, Apricot 37

• NE2000/NE1000 (be careful with clones)
• Netgear FA−310TX (Tulip chip)
• New Media Ethernet

PureData, SEEQ, SMC

• PureData PDUC8028, PDI8023
• SEEQ 8005
• SMC Ultra / EtherEZ (ISA)
• SMC 9000 series
• SMC PCI EtherPower 10/100 (DEC Tulip driver)
• SMC EtherPower II (epic100.c driver)

Sun Lance, Sun Intel, Schneider, WD, Zenith, IBM, Enyx

• Sun LANCE adapters (kernel 2.2 and newer)
• Sun Intel adapters (kernel 2.2 and newer)
• Schneider and Koch G16
• Western Digital WD80x3
• Zenith Z−Note / IBM ThinkPad 300 built−in adapter
• Znyx 312 etherarray (Tulip driver)

6.2 General Ethernet Information

Ethernet devices names are `eth0', `eth1', `eth2' etc. The first card detected by the kernel is assigned
`eth0' and the rest are assigned sequentially in the order they are detected.

Once you have your kernel properly built to support your ethernet card then configuration of the card is easy.

Typically you would use something like (which most distributions already do for you, if you configured them
to support your ethernet):

 root# ifconfig eth0 192.168.0.1 netmask 255.255.255.0 up
 root# route add −net 192.168.0.0 netmask 255.255.255.0 eth0

Most of the ethernet drivers were developed by Donald Becker

 Linux Networking−HOWTO:

PureData, SEEQ, SMC 38

mailto:becker@CESDIS.gsfc.nasa.gov
mailto:becker@CESDIS.gsfc.nasa.gov

6.3 Using 2 or more Ethernet Cards in the same machine

If your driver is a module (Normal with newer distros)

The module will typically can detect all of the installed cards.

Information fromt he detection is stored in the file:

/etc/conf.modules.

Consider that a user has 3 NE2000 cards, one at 0x300 one at 0x240, and one at 0x220. You would add the
following lines to the /etc/conf.modules file:

 alias eth0 ne
 alias eth1 ne
 alias eth2 ne
 options ne io=0x220,0x240,0x300

What this does is tell the program modprobe to look for 3 NE based cards at the following addresses. It also
states in which order they should be found and the device they should be assigned.

Most ISA modules can take multiple comma separated I/O values. For example:

 alias eth0 3c501
 alias eth1 3c501
 options eth0 −o 3c501−0 io=0x280 irq=5
 options eth1 −o 3c501−1 io=0x300 irq=7

The −o option allows for a unique name to be assigned to each module. The reason for this is that you can not
have two copies of the same module loaded.

The irq= option is used to specify the hardware IRQ and the io= to specify the different io ports.

By default, the Linux kernel only probes for one Ethernet device, you need to pass command line arguments
to the kernel in order to force detection of furter boards.

To learn how to make your ethernet card(s) working under Linux you should refer to the Ethernet−HOWTO.

 Linux Networking−HOWTO:

6.3 Using 2 or more Ethernet Cards in the same machine 39

Ethernet-HOWTO.html

7.IP Related Information

This section covers information specific to IP.

7.1 DHCP and DHCPD

DHCP is an acronym for Dynamic Host Configuration Protocol. The creation of DHCP has made configuring
the network on multiple hosts extremely simple. Instead of having to configure each host separately you can
assign all of the commonly used parameters by the hosts using a DHCP server.

Each time the host boots up it will broadcast a packet to the network. This packet is a call to any DHCP
servers that are located on the same segment to configure the host.

DHCP is extermely useful in assigning items such as the IP address, Netmask, and gateway of each host.

7.2 DHCP Client Setup for users of LinuxConf

Under linux as the user root start the program linuxconf. This program comes with all versions of redhat and
works with X as well as the console. It also works for SuSe, and Caldera.

Select Networking
−−−−−−−−−−−−−−−−−>Basic Host Information
−−−−−−−−−−−−−−−−−>Select Enable
−−−−−−−−−−−−−−−−−>Set Config Mode DHCP

7.3 DHCP Server Setup for Linux

Retrieve DHCPD if your machine does not already have it installed.Get DHCPD

Quick Note: MAKE SURE YOU HAVE MULTICAST ENABLED IN THE KERNEL.

If there is not a binary distribution for your version of linux you will have to compile DHCPD.

Edit your /etc/rc.d/rc.local to reflect an addition of a route for 255.255.255.255.

Quoted from DHCPd README:

In order for dhcpd to work correctly with picky DHCP clients (e.g., Windows 95), it must be able to send
packets with an IP destination address of 255.255.255.255. Unfortunately, Linux insists on changing
255.255.255.255 into the local subnet broadcast address (here, that's 192.5.5.223). This results in a DHCP
protocol violation, and while many DHCP clients don't notice the problem, some (e.g., all Microsoft DHCP
clients) do. Clients that have this problem will appear not to see DHCPOFFER messages from the server.

 Linux Networking−HOWTO:

7.IP Related Information 40

ftp://ftp.isc.org/isc/dhcp/
ftp://ftp.isc.org/isc/dhcp/

Type the following as root:

route add −host 255.255.255.255 dev eth0

If the message appears:

255.255.255.255: Unknown host

Try adding the following entry to your /etc/hosts file:

255.255.255.255 dhcp

Then, try:

route add −host dhcp dev eth0

Options for DHCPD

Now you need to configure DHCPd. In order to do this you will have to create or edit /etc/dhcpd.conf. There
is a graphical interface for dhcpd configuration under linuxconf. This makes configuring and managing
DHCPD extremely simple.

If you want to configure it by hand follow instructions below. I suggest configuring it by hand at least once. It
will help in the diagnostics that a GUI can't give you. Unfortunately Micrsoft doesn't believe this.

The easiest thing to do is assign IP addresses randomly. Below is a sample configuration file that shows this
type of setup.

Sample /etc/dhcpd.conf
(add your comments here)
default−lease−time 1200;
max−lease−time 9200;
option subnet−mask 255.255.255.0;
option broadcast−address 192.168.1.255;
option routers 192.168.1.254;
option domain−name−servers 192.168.1.1, 192.168.1.2;
option domain−name "mydomain.org";

subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.10 192.168.1.100;
range 192.168.1.150 192.168.1.200;
}

This will allow the DHCP server to assign the client an IP address from the range
192.168.1.10−192.168.1.100 or 192.168.1.150−192.168.1.200.

It will lease an IP address for 1200 seconds if the client doesn't request a longer time frame. Otherwise the
maximum (allowed) lease the server will allow is 9200 seconds. The server send the following paramaters to
the client:

 Linux Networking−HOWTO:

Options for DHCPD 41

http://www.solucorp.qc.ca

Use 255.255.255.0 as your subnet mask Use 192.168.1.255 as your broadcast address Use 192.168.1.254 as
your default gateway USE 192.168.1.1 and 192.168.1.2 as your DNS servers.

If you specify a WINS server for your Windows clients you need to include the following option in the
dhcpd.conf file.

option netbios−name−servers 192.168.1.1;

You can also assign specific IP addresses based on clients ethernet MAC address e.g.

 host haagen {
 hardware ethernet 08:00:2b:4c:59:23;
 fixed−address 192.168.1.222;
}

This will assign IP address 192.168.1.222 to a client with ethernet MAC address of 08:00:2b:4c:59:23.

Starting the server

In most cases the DHCP installation doesn't create a dhcpd.leases file. Therefore before you start the server
you must type to create an empty file:

touch /var/state/dhcp/dhcpd.leases

To start the DHCP server, simply type (or include in the bootup scripts)

/usr/sbin/dhcpd

This will start dhcpd on eth0 device. If you need to start it on another device simply supply it on the
command line e.g.

/usr/sbin/dhcpd eth1

If you wish to test the configuration for any oddities you can start dhcpd with the debugging mode. Typing
the command below will allow you to see exactly what is going on with the server.

/usr/sbin/dhcpd −d −f

Boot up a client take a look at the console of the server. You will see a number of debugging messages come
up.

Your done

 Linux Networking−HOWTO:

Starting the server 42

7.4 EQL − multiple line traffic equaliser

The EQL device name is `eql'. With the standard kernel source you may have only one EQL device per
machine. EQL provides a means of utilizing multiple point to point lines such as PPP, slip or plip as a single
logical link to carry tcp/ip. Often it is cheaper to use multiple lower speed lines than to have one high speed
line installed.

Kernel Compile Options:

 Network device support −−−>
 [*] Network device support
 <*> EQL (serial line load balancing) support

To support this mechanism the machine at the other end of the lines must also support EQL. Linux,
Livingstone Portmasters and newer dial−in servers support compatible facilities.

To configure EQL you will need the eql tools which are available from: metalab.unc.edu.

Configuration is fairly straightforward. You start by configuring the eql interface. The eql interface is just
like any other network device. You configure the IP address and mtu using the ifconfig utility, so something
like:

 root# ifconfig eql 192.168.10.1 mtu 1006

Next you need to manually initiate each of the lines you will use. These may be any combination of point to
point network devices. How you initiate the connections will depend on what sort of link they are, refer to the
appropriate sections for further information.

Lastly you need to associate the serial link with the EQL device, this is called `enslaving' and is done with the
eql_enslave command as shown:

 root# eql_enslave eql sl0 28800
 root# eql_enslave eql ppp0 14400

The `estimated speed' parameter you supply eql_enslave doesn't do anything directly. It is used by the EQL
driver to determine what share of the datagrams that device should receive, so you can fine tune the balancing
of the lines by playing with this value.

To disassociate a line from an EQL device you use the eql_emancipate command as shown:

 root# eql_emancipate eql sl0

 Linux Networking−HOWTO:

7.4 EQL − multiple line traffic equaliser 43

ftp://metalab.unc.edu/pub/linux/system/Serial/eql-1.2.tar.gz

You add routing as you would for any other point to point link, except your routes should refer to the
eql device rather than the actual serial devices themselves, typically you would use:

 root# route add default eql

The EQL driver was developed by Simon Janes, simon@ncm.com.

7.5 IP Accounting (for Linux−2.0)

The IP accounting features of the Linux kernel allow you to collect and analyze some network usage data.
The data collected comprises the number of packets and the number of bytes accumulated since the figures
were last reset. You may specify a variety of rules to categorize the figures to suit whatever purpose you may
have. This option has been removed in kernel 2.1.102, because the old ipfwadm−based firewalling was
replaced by ``ipfwchains''.

Kernel Compile Options:

 Networking options −−−>
 [*] IP: accounting

After you have compiled and installed the kernel you need to use the ipfwadm command to configure IP
accounting. There are many different ways of breaking down the accounting information that you might
choose. I've picked a simple example of what might be useful to use, you should read the ipfwadm man page
for more information.

Scenario: You have a ethernet network that is linked to the internet via a PPP link. On the ethernet you have a
machine that offers a number of services and that you are interested in knowing how much traffic is
generated by each of ftp and world wide web traffic, as well as total tcp and udp traffic.

You might use a command set that looks like the following, which is shown as a shell script:

 #!/bin/sh
 #
 # Flush the accounting rules
 ipfwadm −A −f
 #
 # Set shortcuts
 localnet=44.136.8.96/29
 any=0/0
 # Add rules for local ethernet segment
 ipfwadm −A in −a −P tcp −D $localnet ftp−data
 ipfwadm −A out −a −P tcp −S $localnet ftp−data
 ipfwadm −A in −a −P tcp −D $localnet www
 ipfwadm −A out −a −P tcp −S $localnet www
 ipfwadm −A in −a −P tcp −D $localnet
 ipfwadm −A out −a −P tcp −S $localnet

 Linux Networking−HOWTO:

7.5 IP Accounting (for Linux−2.0) 44

 ipfwadm −A in −a −P udp −D $localnet
 ipfwadm −A out −a −P udp −S $localnet
 #
 # Rules for default
 ipfwadm −A in −a −P tcp −D $any ftp−data
 ipfwadm −A out −a −P tcp −S $any ftp−data
 ipfwadm −A in −a −P tcp −D $any www
 ipfwadm −A out −a −P tcp −S $any www
 ipfwadm −A in −a −P tcp −D $any
 ipfwadm −A out −a −P tcp −S $any
 ipfwadm −A in −a −P udp −D $any
 ipfwadm −A out −a −P udp −S $any
 #
 # List the rules
 ipfwadm −A −l −n
 #

The names ``ftp−data'' and ``www'' refer to lines in /etc/services. The last command lists each of the
Accounting rules and displays the collected totals.

An important point to note when analyzing IP accounting is that totals for all rules that match will be
incremented so that to obtain differential figures you need to perform appropriate maths. For example if I
wanted to know how much data was not ftp nor www I would substract the individual totals from the rule that
matches all ports.

root# ipfwadm −A −l −n
IP accounting rules
 pkts bytes dir prot source destination ports
 0 0 in tcp 0.0.0.0/0 44.136.8.96/29 * −> 20
 0 0 out tcp 44.136.8.96/29 0.0.0.0/0 20 −> *
 10 1166 in tcp 0.0.0.0/0 44.136.8.96/29 * −> 80
 10 572 out tcp 44.136.8.96/29 0.0.0.0/0 80 −> *
 252 10943 in tcp 0.0.0.0/0 44.136.8.96/29 * −> *
 231 18831 out tcp 44.136.8.96/29 0.0.0.0/0 * −> *
 0 0 in udp 0.0.0.0/0 44.136.8.96/29 * −> *
 0 0 out udp 44.136.8.96/29 0.0.0.0/0 * −> *
 0 0 in tcp 0.0.0.0/0 0.0.0.0/0 * −> 20
 0 0 out tcp 0.0.0.0/0 0.0.0.0/0 20 −> *
 10 1166 in tcp 0.0.0.0/0 0.0.0.0/0 * −> 80
 10 572 out tcp 0.0.0.0/0 0.0.0.0/0 80 −> *
 253 10983 in tcp 0.0.0.0/0 0.0.0.0/0 * −> *
 231 18831 out tcp 0.0.0.0/0 0.0.0.0/0 * −> *
 0 0 in udp 0.0.0.0/0 0.0.0.0/0 * −> *
 0 0 out udp 0.0.0.0/0 0.0.0.0/0 * −> *

IP Accounting (for Linux−2.2)

The new accounting code is accessed via ``IP Firewall Chains''. See the IP chains home page for more
information. Among other things, you'll now need to use ipchains instead of ipfwadm to configure your
filters. (From Documentation/Changes in the latest kernel sources).

 Linux Networking−HOWTO:

IP Accounting (for Linux−2.2) 45

http://www.adelaide.net.au/~rustcorp/ipfwchains/ipfwchains.html
http://www.adelaide.net.au/~rustcorp/ipfwchains/ipfwchains.html
http://www.adelaide.net.au/~rustcorp/ipfwchains/ipfwchains.html
http://www.adelaide.net.au/~rustcorp/ipfwchains/ipfwchains.html
http://www.adelaide.net.au/~rustcorp/ipfwchains/ipfwchains.html

7.6 IP Aliasing

There are some applications where being able to configure multiple IP addresses to a single network device is
useful. Internet Service Providers often use this facility to provide a `customized' to their World Wide Web
and ftp offerings for their customers. You can refer to the ``IP−Alias mini−HOWTO'' for more information
than you find here.

Kernel Compile Options:

 Networking options −−−>

 [*] Network aliasing

 <*> IP: aliasing support

After compiling and installing your kernel with IP_Alias support configuration is very simple. The aliases are
added to virtual network devices associated with the actual network device. A simple naming convention
applies to these devices being <devname>:<virtual dev num>, e.g. eth0:0, ppp0:10 etc. Note
that the the ifname:number device can only be configured after the main interface has been set up.

For example, assume you have an ethernet network that supports two different IP subnetworks
simultaneously and you wish your machine to have direct access to both, you could use something like:

 root# ifconfig eth0 192.168.1.1 netmask 255.255.255.0 up
 root# route add −net 192.168.1.0 netmask 255.255.255.0 eth0

 root# ifconfig eth0:0 192.168.10.1 netmask 255.255.255.0 up
 root# route add −net 192.168.10.0 netmask 255.255.255.0 eth0:0

To delete an alias you simply add a `−' to the end of its name and refer to it and is as simple as:

 root# ifconfig eth0:0− 0

All routes associated with that alias will also be deleted automatically.

7.7 IP Firewall (for Linux−2.0)

IP Firewall and Firewalling issues are covered in more depth in the Firewall−HOWTO. IP Firewalling allows
you to secure your machine against unauthorized network access by filtering or allowing datagrams from or
to IP addresses that you nominate. There are three different classes of rules, incoming filtering, outgoing
filtering and forwarding filtering. Incoming rules are applied to datagrams that are received by a network
device. Outgoing rules are applied to datagrams that are to be transmitted by a network device. Forwarding
rules are applied to datagrams that are received and are not for this machine, ie datagrams that would be

 Linux Networking−HOWTO:

7.6 IP Aliasing 46

Firewall-HOWTO.html

routed.

Kernel Compile Options:

 Networking options −−−>
 [*] Network firewalls

 [*] IP: forwarding/gatewaying

 [*] IP: firewalling
 [] IP: firewall packet logging

Configuration of the IP firewall rules is performed using the ipfwadm command. As I mentioned earlier,
security is not something I am expert at, so while I will present an example you can use, you should do your
own research and develop your own rules if security is important to you.

Probably the most common use of IP firewall is when you are using your linux machine as a router and
firewall gateway to protect your local network from unauthorized access from outside your network.

The following configuration is based on a contribution from Arnt Gulbrandsen, <agulbra@troll.no>.

The example describes the configuration of the firewall rules on the Linux firewall/router machine illustrated
in this diagram:

− −
 \ | 172.16.37.0
 \ | /255.255.255.0
 \ −−−−−−−−− |
 | 172.16.174.30 | Linux | |
NET =================| f/w |−−−−−−| ..37.19
 | PPP | router| | −−−−−−−−
 / −−−−−−−−− |−−| Mail |
 / | | /DNS |
 / | −−−−−−−−
− −

The following commands would normally be placed in an rc file so that they were automatically started each
time the system boots. For maximum security they would be performed after the network interfaces are
configured, but before the interfaces are actually brought up to prevent anyone gaining access while the
firewall machine is rebooting.

 #!/bin/sh

 # Flush the 'Forwarding' rules table
 # Change the default policy to 'accept'
 #
 /sbin/ipfwadm −F −f
 /sbin/ipfwadm −F −p accept
 #
 # .. and for 'Incoming'
 #

 Linux Networking−HOWTO:

7.6 IP Aliasing 47

 /sbin/ipfwadm −I −f
 /sbin/ipfwadm −I −p accept

 # First off, seal off the PPP interface
 # I'd love to use '−a deny' instead of '−a reject −y' but then it
 # would be impossible to originate connections on that interface too.
 # The −o causes all rejected datagrams to be logged. This trades
 # disk space against knowledge of an attack of configuration error.
 #
 /sbin/ipfwadm −I −a reject −y −o −P tcp −S 0/0 −D 172.16.174.30

 # Throw away certain kinds of obviously forged packets right away:
 # Nothing should come from multicast/anycast/broadcast addresses
 #
 /sbin/ipfwadm −F −a deny −o −S 224.0/3 −D 172.16.37.0/24
 #
 # and nothing coming from the loopback network should ever be
 # seen on a wire
 #
 /sbin/ipfwadm −F −a deny −o −S 127.0/8 −D 172.16.37.0/24

 # accept incoming SMTP and DNS connections, but only
 # to the Mail/Name Server
 #
 /sbin/ipfwadm −F −a accept −P tcp −S 0/0 −D 172.16.37.19 25 53
 #
 # DNS uses UDP as well as TCP, so allow that too
 # for questions to our name server
 #
 /sbin/ipfwadm −F −a accept −P udp −S 0/0 −D 172.16.37.19 53
 #
 # but not "answers" coming to dangerous ports like NFS and
 # Larry McVoy's NFS extension. If you run squid, add its port here.
 #
 /sbin/ipfwadm −F −a deny −o −P udp −S 0/0 53 \
 −D 172.16.37.0/24 2049 2050

 # answers to other user ports are okay
 #
 /sbin/ipfwadm −F −a accept −P udp −S 0/0 53 \
 −D 172.16.37.0/24 53 1024:65535

 # Reject incoming connections to identd
 # We use 'reject' here so that the connecting host is told
 # straight away not to bother continuing, otherwise we'd experience
 # delays while ident timed out.
 #
 /sbin/ipfwadm −F −a reject −o −P tcp −S 0/0 −D 172.16.37.0/24 113

 # Accept some common service connections from the 192.168.64 and
 # 192.168.65 networks, they are friends that we trust.
 #
 /sbin/ipfwadm −F −a accept −P tcp −S 192.168.64.0/23 \
 −D 172.16.37.0/24 20:23

 # accept and pass through anything originating inside
 #
 /sbin/ipfwadm −F −a accept −P tcp −S 172.16.37.0/24 −D 0/0

 # deny most other incoming TCP connections and log them
 # (append 1:1023 if you have problems with ftp not working)
 #

 Linux Networking−HOWTO:

7.6 IP Aliasing 48

 /sbin/ipfwadm −F −a deny −o −y −P tcp −S 0/0 −D 172.16.37.0/24

 # ... for UDP too
 #
 /sbin/ipfwadm −F −a deny −o −P udp −S 0/0 −D 172.16.37.0/24

Good firewall configurations are a little tricky. This example should be a reasonable starting point for you.
The ipfwadm manual page offers some assistance in how to use the tool. If you intend to configure a firewall,
be sure to ask around and get as much advice from sources you consider reliable and get someone to
test/sanity check your configuration from the outside.

IP Firewall (for Linux−2.2)

The new firewalling code is accessed via ``IP Firewall Chains''. See the IP chanins home page for more
information. Among other things, you'll now need to use ipchains instead of ipfwadm to configure your
filters. (From Documentation/Changes in the latest kernel sources).

We are aware that this is a sorely out of date statement and we are currently working on getting this section
more current. You can expect a newer version in sometime 1999.

7.8 IPIP Encapsulation

Why would you want to encapsulate IP datagrams within IP datagrams? It must seem an odd thing to do if
you've never seen an application of it before. Ok, here are a couple of common places where it is used:
Mobile−IP and IP−Multicast. What is perhaps the most widely spread use of it though is also the least well
known, Amateur Radio.

Kernel Compile Options:

 Networking options −−−>
 [*] TCP/IP networking
 [*] IP: forwarding/gatewaying

 <*> IP: tunneling

IP tunnel devices are called `tunl0', `tunl1' etc.

"But why ?". Ok, ok. Conventional IP routing rules mandate that an IP network comprises a network address
and a network mask. This produces a series of contiguous addresses that may all be routed via a single
routing entry. This is very convenient, but it means that you may only use any particular IP address while you
are connected to the particular piece of network to which it belongs. In most instances this is ok, but if you
are a mobile netizen then you may not be able to stay connected to the one place all the time. IP/IP
encapsulation (IP tunneling) allows you to overcome this restriction by allowing datagrams destined for your
IP address to be wrapped up and redirected to another IP address. If you know that you're going to be
operating from some other IP network for some time you can set up a machine on your home network to
accept datagrams to your IP address and redirect them to the address that you will actually be using

 Linux Networking−HOWTO:

IP Firewall (for Linux−2.2) 49

http://www.adelaide.net.au/~rustcorp/ipfwchains/ipfwchains.html
http://www.adelaide.net.au/~rustcorp/ipfwchains/ipfwchains.html
http://www.adelaide.net.au/~rustcorp/ipfwchains/ipfwchains.html
http://www.adelaide.net.au/~rustcorp/ipfwchains/ipfwchains.html
http://www.adelaide.net.au/~rustcorp/ipfwchains/ipfwchains.html

temporarily.

A tunneled network configuration.

 192.168.1/24 192.168.2/24

 − −
 | ppp0 = ppp0 = |
 | aaa.bbb.ccc.ddd fff.ggg.hhh.iii |
 | |
 | /−−−−−\ /−−−−−\ |
 | | | // | | |
 |−−−| A |−−−−−−//−−−−−−−−−| B |−−−|
 | | | // | | |
 | \−−−−−/ \−−−−−/ |
 | |
 − −

The diagram illustrates another possible reason to use IPIP encapsulation, virtual private networking. This
example presupposes that you have two machines each with a simple dial up internet connection. Each host is
allocated just a single IP address. Behind each of these machines are some private local area networks
configured with reserved IP network addresses. Suppose that you want to allow any host on network A to
connect to any host on network B, just as if they were properly connected to the Internet with a network
route. IPIP encapsulation will allow you to do this. Note, encapsulation does not solve the problem of how
you get the hosts on networks A and B to talk to any other on the Internet, you still need tricks like IP
Masquerade for that. Encapsulation is normally performed by machine functioning as routers.

Linux router `A' would be configured with a script like the following:

 #!/bin/sh
 PATH=/sbin:/usr/sbin
 mask=255.255.255.0
 remotegw=fff.ggg.hhh.iii
 #
 # Ethernet configuration
 ifconfig eth0 192.168.1.1 netmask $mask up
 route add −net 192.168.1.0 netmask $mask eth0
 #
 # ppp0 configuration (start ppp link, set default route)
 pppd
 route add default ppp0
 #
 # Tunnel device configuration
 ifconfig tunl0 192.168.1.1 up
 route add −net 192.168.2.0 netmask $mask gw $remotegw tunl0

Linux router `B' would be configured with a similar script:

 #!/bin/sh
 PATH=/sbin:/usr/sbin
 mask=255.255.255.0

 Linux Networking−HOWTO:

A tunneled network configuration. 50

 remotegw=aaa.bbb.ccc.ddd
 #
 # Ethernet configuration
 ifconfig eth0 192.168.2.1 netmask $mask up
 route add −net 192.168.2.0 netmask $mask eth0
 #
 # ppp0 configuration (start ppp link, set default route)
 pppd
 route add default ppp0
 #
 # Tunnel device configuration
 ifconfig tunl0 192.168.2.1 up
 route add −net 192.168.1.0 netmask $mask gw $remotegw tunl0

The command:

 route add −net 192.168.1.0 netmask $mask gw $remotegw tunl0

reads: `Send any datagrams destined for 192.168.1.0/24 inside an IPIP encap datagram with a
destination address of aaa.bbb.ccc.ddd'.

Note that the configurations are reciprocated at either end. The tunnel device uses the `gw' in the route as the
destination of the IP datagram in which it will place the datagram it has received to route. That machine must
know how to decapsulate IPIP datagrams, that is, it must also be configured with a tunnel device.

A tunneled host configuration.

It doesn't have to be a whole network you route. You could for example route just a single IP address. In that
instance you might configure the tunl device on the `remote' machine with its home IP address and at the A
end just use a host route (and Proxy Arp) rather than a network route via the tunnel device. Let's redraw and
modify our configuration appropriately. Now we have just host `B' which to want to act and behave as if it is
both fully connected to the Internet and also part of the remote network supported by host `A':

 192.168.1/24

 −
 | ppp0 = ppp0 =
 | aaa.bbb.ccc.ddd fff.ggg.hhh.iii
 |
 | /−−−−−\ /−−−−−\
 | | | // | |
 |−−−| A |−−−−−−//−−−−−−−−−| B |
 | | | // | |
 | \−−−−−/ \−−−−−/
 | also: 192.168.1.12
 −

Linux router `A' would be configured with:

 Linux Networking−HOWTO:

A tunneled host configuration. 51

 #!/bin/sh
 PATH=/sbin:/usr/sbin
 mask=255.255.255.0
 remotegw=fff.ggg.hhh.iii
 #
 # Ethernet configuration
 ifconfig eth0 192.168.1.1 netmask $mask up
 route add −net 192.168.1.0 netmask $mask eth0
 #
 # ppp0 configuration (start ppp link, set default route)
 pppd
 route add default ppp0
 #
 # Tunnel device configuration
 ifconfig tunl0 192.168.1.1 up
 route add −host 192.168.1.12 gw $remotegw tunl0
 #
 # Proxy ARP for the remote host
 arp −s 192.168.1.12 xx:xx:xx:xx:xx:xx pub

Linux host `B' would be configured with:

 #!/bin/sh
 PATH=/sbin:/usr/sbin
 mask=255.255.255.0
 remotegw=aaa.bbb.ccc.ddd
 #
 # ppp0 configuration (start ppp link, set default route)
 pppd
 route add default ppp0
 #
 # Tunnel device configuration
 ifconfig tunl0 192.168.1.12 up
 route add −net 192.168.1.0 netmask $mask gw $remotegwtunl0

This sort of configuration is more typical of a Mobile−IP application. Where a single host wants to roam
around the Internet and maintain a single usable IP address the whole time. You should refer to the
Mobile−IP section for more information on how that is handled in practice.

7.9 IP Masquerade

Many people have a simple dialup account to connect to the Internet. Nearly everybody using this sort of
configuration is allocated a single IP address by the Internet Service Provider. This is normally enough to
allow only one host full access to the network. IP Masquerade is a clever trick that enables you to have many
machines make use of that one IP address, by causing the other hosts to look like, hence the term
masquerade, the machine supporting the dialup connection. There is a small caveat and that is that the
masquerade function nearly always works only in one direction, that is the masqueraded hosts can make calls
out, but they cannot accept or receive network connections from remote hosts. This means that some network
services do not work such as talk and others such as ftp must be configured to operate in passive (PASV)
mode to operate. Fortunately the most common network services such as telnet, World Wide Web and irc do
work just fine.

 Linux Networking−HOWTO:

7.9 IP Masquerade 52

Kernel Compile Options:

 Code maturity level options −−−>
 [*] Prompt for development and/or incomplete code/drivers
 Networking options −−−>
 [*] Network firewalls

 [*] TCP/IP networking
 [*] IP: forwarding/gatewaying

 [*] IP: masquerading (EXPERIMENTAL)

Normally you have your linux machine supporting a slip or PPP dialup line just as it would if it were a
standalone machine. Additionally it would have another network device configured, perhaps an ethernet,
configured with one of the reserved network addresses. The hosts to be masqueraded would be on this second
network. Each of these hosts would have the IP address of the ethernet port of the linux machine set as their
default gateway or router.

A typical configuration might look something like this:

− −
 \ | 192.168.1.0
 \ | /255.255.255.0
 \ −−−−−−−−− |
 | | Linux | .1.1 |
NET =================| masq |−−−−−−|
 | PPP/slip | router| | −−−−−−−−
 / −−−−−−−−− |−−| host |
 / | | |
 / | −−−−−−−−
− −

Masquerading with IPFWADM (Kernels 2.0.x)

The most relevant commands for this configuration are:

 # Network route for ethernet
 route add −net 192.168.1.0 netmask 255.255.255.0 eth0
 #
 # Default route to the rest of the internet.
 route add default ppp0
 #
 # Cause all hosts on the 192.168.1/24 network to be masqueraded.
 ipfwadm −F −a m −S 192.168.1.0/24 −D 0.0.0.0/0

 Linux Networking−HOWTO:

Masquerading with IPFWADM (Kernels 2.0.x) 53

Masquerading with IPCHAINS

This is similar to using IPFWADM but the command structure has changed:

 # Network route for ethernet
 route add −net 192.168.1.0 netmask 255.255.255.0 eth0
 #
 # Default route to the rest of the internet.
 route add default ppp0
 #
 # Cause all hosts on the 192.168.1/24 network to be masqueraded.
 ipchains −A forward −s 192.168.1.0/24 −j MASQ

You can get more information on the Linux IP Masquerade feature from the IP Masquerade Resource Page.
Also, a very detailed document about masquesrading is the ``IP−Masquerade mini−HOWTO'' (which also
intructs to configure other OS's to run with a Linux masquerade server).

7.10 IP Transparent Proxy

IP transparent proxy is a feature that enables you to redirect servers or services destined for another machine
to those services on this machine. Typically this would be useful where you have a linux machine as a router
and also provides a proxy server. You would redirect all connections destined for that service remotely to the
local proxy server.

Kernel Compile Options:

 Code maturity level options −−−>
 [*] Prompt for development and/or incomplete code/drivers
 Networking options −−−>
 [*] Network firewalls

 [*] TCP/IP networking

 [*] IP: firewalling

 [*] IP: transparent proxy support (EXPERIMENTAL)

Configuration of the transparent proxy feature is performed using the ipfwadm command

An example that might be useful is as follows:

 root# ipfwadm −I −a accept −D 0/0 telnet −r 2323

This example will cause any connection attempts to port telnet (23) on any host to be redirected to port

 Linux Networking−HOWTO:

Masquerading with IPCHAINS 54

http://www.hwy401.com/achau/ipmasq/
http://www.hwy401.com/achau/ipmasq/
http://www.hwy401.com/achau/ipmasq/
http://www.hwy401.com/achau/ipmasq/

2323 on this host. If you run a service on that port, you could forward telnet connections, log them or do
whatever fits your need.

A more interesting example is redirecting all http traffic through a local cache. However, the protocol used
by proxy servers is different from native http: where a client connects to www.server.com:80 and asks
for /path/page, when it connects to the local cache it contacts proxy.local.domain:8080 and asks
for www.server.com/path/page.

To filter an http request through the local proxy, you need to adapt the protocol by inserting a small server,
called transproxy (you can find it on the world wide web). You can choose to run transproxy on port
8081, and issue this command:

 root# ipfwadm −I −a accept −D 0/0 80 −r 8081

The transproxy program, then, will receive all connections meant to reach external servers and will pass
them to the local proxy after fixing protocol differences.

7.11 IPv6

Just when you thought you were beginning to understand IP networking the rules get changed! IPv6 is the
shorthand notation for version 6 of the Internet Protocol. IPv6 was developed primarily to overcome the
concerns in the Internet community that there would soon be a shortage of IP addresses to allocate. IPv6
addresses are 16 bytes long (128 bits). IPv6 incorporates a number of other changes, mostly simplifications,
that will make IPv6 networks more managable than IPv4 networks.

Linux already has a working, but not complete, IPv6 implementation in the 2.2.* series kernels.

If you wish to experiment with this next generation Internet technology, or have a requirement for it, then you
should read the IPv6−FAQ which is available from www.terra.net.

7.12 Mobile IP

The term "IP mobility" describes the ability of a host that is able to move its network connection from one
point on the Internet to another without changing its IP address or losing connectivity. Usually when an IP
host changes its point of connectivity it must also change its IP address. IP Mobility overcomes this problem
by allocating a fixed IP address to the mobile host and using IP encapsulation (tunneling) with automatic
routing to ensure that datagrams destined for it are routed to the actual IP address it is currently using.

A project is underway to provide a complete set of IP mobility tools for Linux. The Status of the project and
tools may be obtained from the: Linux Mobile IP Home Page.

 Linux Networking−HOWTO:

7.11 IPv6 55

http://www.terra.net/ipv6/
http://anchor.cs.binghamton.edu/~mobileip/
http://anchor.cs.binghamton.edu/~mobileip/
http://anchor.cs.binghamton.edu/~mobileip/
http://anchor.cs.binghamton.edu/~mobileip/
http://anchor.cs.binghamton.edu/~mobileip/

7.13 Multicast

IP Multicast allows an arbitrary number of IP hosts on disparate IP networks to have IP datagrams
simultaneously routed to them. This mechanism is exploited to provide Internet wide "broadcast" material
such as audio and video transmissions and other novel applications.

Kernel Compile Options:

Networking options −−−>
 [*] TCP/IP networking

 [*] IP: multicasting

A suite of tools and some minor network configuration is required. Please check the Multicast−HOWTO for
more information on Multicast support in Linux.

7.14 Traffic Shaper − Changing allowed bandwidth

The traffic shaper is a driver that creates new interface devices, those devices are traffic−limited in a
user−defined way, they rely on physical network devices for actual transmission and can be used as outgoing
routed for network traffic.

The shaper was introduced in Linux−2.1.15 and was backported to Linux−2.0.36 (it appeared in
2.0.36−pre−patch−2 distributed by Alan Cox, the author of the shaper device and maintainer of
Linux−2.0).

The traffic shaper can only be compiled as a module and is configured by the shapecfg program with
commands like the following:

 shapecfg attach shaper0 eth1
 shapecfg speed shaper0 64000

The shaper device can only control the bandwidth of outgoing traffic, as packets are transmitted via the
shaper only according to the routing tables; therefore, a ``route by source address'' functionality could help in
limiting the overall bandwidth of specific hosts using a Linux router.

Linux−2.2 already has support for such routing, if you need it for Linux−2.0 please check the patch by Mike
McLagan, at ftp.invlogic.com. Refer to Documentationnetworking/shaper.txt for further
information about the shaper.

If you want to try out a (tentative) shaping for incoming packets, try out rshaper−1.01 (or newer), from
ftp.systemy.it.

 Linux Networking−HOWTO:

7.13 Multicast 56

Multicast-HOWTO.html
ftp://ftp.systemy.it/pub/develop

8.Advanced Networking with Kernel 2.2

Kernel 2.2 has advanced the routing capabilities of Linux quite a bit. Unfortunately the documentation for
using these new capabilities is almost impossible to find, even if it does exist.

I have put some time into it and have been able to do a little with it. I will add more as I have time and help to
figure out what it all means.

In kernel 2.0 and below Linux used the standard route command to place routes in a single routing table. If
you were to type netstat −rn at the Linux prompt you could see and example.

In the newer kernels (2.1 and above) you have another option. This option is rule based and allows you to
have multiple routing tables. The new rules allow a great deal of flexibility in deciding how a packet is
handled. You can choose between routes based not only on the destination address, but the source address,
TOS, or incoming device.

8.1 The Basics

Listing the Routing Table:

ip route

Now on my machine this equates to the following output:

207.149.43.62 dev eth0 scope link
207.149.43.0/24 dev eth0 proto kernel scope link src 207.149.43.62
default via 207.149.43.1 dev eth0

The first line:

207.149.43.62 dev eth0 scope link is the route for the interface

The second line:

207.149.43.0/24 dev eth0 proto kernel scope link src 207.149.43.62 Is the route that says everything that
goes to 207.149.43.0 needs to go out 207.149.43.62.

The third line:

default via 207.149.43.1 dev eth0 is the default route.

 Linux Networking−HOWTO:

8.Advanced Networking with Kernel 2.2 57

Using the information

Now that we have walked through a basic routing table. Lets see how we use it. First read the Policy routing
text. If you get confused, don't worry −− it is a confusing text. It will give you the run down on everything
that the new routing code can do.

8.2 Adding a route with the new ip tools

In the previous section we spoke about listing the routing table and what the basics of that listing meant.
Well, luckily the output is very similar to the syntax that you would use to implement that exact routing table
on your own.

ip route add 207.149.43.62 dev eth0 scope link
ip route add 207.149.43.0/24 dev eth0 proto kernel scope link src 207.149.43.62
ip route add 127.0.0.0/8 dev lo scope link
ip route add default via 207.149.43.1 dev eth0

As you can see the output and input are almost exact except for the adding of the ip route add in front of the
line.

Note: We are aware that the documentation on Routing with 2.2 is sorely lacking. In fact, I think
EVERYONE is aware of it. If you have any experience in this please contact us at poet@linuxports.com we
would like to get information you have to help further document this.

8.3 Using NAT with Kernel 2.2

The IP Network Address Translation facility is pretty much the standardized big brother of the Linux IP
Masquerade facility. It is specified in some detail in RFC−1631 at your nearest RFC archive. NAT provides
features that IP−Masquerade does not that make it eminently more suitable for use in corporate firewall
router designs and larger scale installations.

An alpha implementation of NAT for Linux 2.0.29 kernel has been developed by Michael.Hasenstein,
Michael.Hasenstein@informatik.tu−chemnitz.de. Michaels documentation and
implementation are available from: Linux IP Network Address Web Page

The much improved TCP/IP stack of Linux 2.2 kernel has NAT functionality built−in. This facility seems to
obsolete the work by Michael Hasenstein (Michael.Hasenstein@informatik.tu−chemnitz.de).

To get it work you need kernel with enabled CONFIG_IP_ADVANCED_ROUTER,
CONFIG_IP_MULTIPLE_TABLES (aka policy routing) and CONFIG_IP_ROUTE_NAT (aka fast NAT).
Also, if you want to use finer grained NAT rules, you may also want to turn on firewalling
(CONFIG_IP_FIREWALL) and CONFIG_IP_ROUTE_FWMARK. To actually operate these kernel features
you will need the "ip" program by Alexey Kuznyetsov from ftp://ftp.inr.ac.ru/ip−routing/.

 Linux Networking−HOWTO:

Using the information 58

http://www.compendium.com.ar/policy-routing.txt
http://www.compendium.com.ar/policy-routing.txt
http://www.compendium.com.ar/policy-routing.txt
http://www.compendium.com.ar/policy-routing.txt
mailto:poet@linuxports.com
http://www.csn.tu-chemnitz.de/HyperNews/get/linux-ip-nat.html
http://www.csn.tu-chemnitz.de/HyperNews/get/linux-ip-nat.html
http://www.csn.tu-chemnitz.de/HyperNews/get/linux-ip-nat.html
http://www.csn.tu-chemnitz.de/HyperNews/get/linux-ip-nat.html
http://www.csn.tu-chemnitz.de/HyperNews/get/linux-ip-nat.html
http://www.csn.tu-chemnitz.de/HyperNews/get/linux-ip-nat.html

Incoming datagrams NAT

Now, to translate addresses of incoming datagrams, following command is used:

 ip route add nat <ext−addr>[/<masklen>] via <int−addr>

This will make incoming packet destined to "ext−addr" (the address visible from outside internet) to have its
destination address field rewritten to "int−addr" (the address in your internal network, behind your
gateway/firewall). The packet is then routed further according local routing table. You can translate either
single host addresses, or complete blocks. Examples:

 ip route add nat 195.113.148.34 via 192.168.0.2
 ip route add nat 195.113.148.32/27 via 192.168.0.0

First command will make internal address 192.168.0.2 accessible as 195.113.148.34. The second example
shows remapping block 192.168.0.0−31 to 195.113.148.32−63.

9.Kernel 2.2 IP Command Reference (Work In Progress)

9.1 ip

If you have the iproute2 tools installed, executing the ip command will allow the basic syntax to be displayed.

[root@jd Net4]# ip
Usage: ip [OPTIONS] OBJECT { COMMAND | help }
where OBJECT := { link | addr | route | rule | neigh | tunnel |
 maddr | mroute | monitor }
 OPTIONS := { −V[ersion] | −s[tatistics] | −r[esolve] |
 −f[amily] { inet | inet6 | dnet | link } | −o[neline] }

There are also several options available:

−V, −Version −− print the version of the ip utility you are using and exit.

−s, −stats, −statistics −− obtain more output on the speficied device. You can issue this option more than
once to increase the amount of information being displayed.

 Linux Networking−HOWTO:

9.Kernel 2.2 IP Command Reference (Work In Progress) 59

−f, −family followed by a protocol family identifier such as: inet, inet6 or link. −− Specify the exact
protocol family to use, inet uses the standard IPv4 (e.g.; current internet standard), inet6 uses IPv6 (ground
breadking, never to be implemented internet standard), and link (a physical link). If you do not present the
option the protocol family is guessed and if not enough information is present it will fallback to the default
setting.

−o, −oneline Show the output each device record in a single line.

−r, −resolve Use the system resolver (e.g.; DNS) to print actual names versus IP numbers.

OBJECT Is the object/device to manage or get information about. The current device types understood by
the current implementation are:

• link −− The network device e.g.; eth0 or ppp0 .
• address −− The IP (IP or IPv6) address on the specified device.
• neigh −− The ARP or NDISC cache entry.
• route −− The routing table entry.
• rule −− The rule in routing policy database.
• maddress −− The multicast address.
• mroute −− The multicast route cache entry.
• tunnel −− Whether or not to tunnel over IP.

The amount of possible options allowed on each object type depend on the type of action being taken. As a
basic rule it is possible to add, delete, or to show the object(s), but not all object will allow additional
commands to be used. Of course, command help is available for all objects and when used will print out a list
of available sytanx conventions for the given object.

If you do not give a command, the default command will be assumed. Typically the default command is to
list the objects or if the the objects can not be listed to provide the standard help output.

ARGUMENTS is the list of arguments that can be passed to the command. The number of arguments
depend on the command and object being used. There is two types of arguments:

flags consist of a keyword followed by a value. For convenience each command has some default parameters,
which can be left out for easier use. For example, the paramater dev> defaults to an ip link.

Mistakes... thank god for smart coders. All the operations within the ip commands are dynamic. If the
sytanx of the ip utility fails, it will not change the configuration of the system. As always, there is an
exception to this rule, the ip link command which is used to change part of a device parameters.

It is difficult to list all the error messages (especially, about syntax errors), however as rule their meaning is
clear in the context of the command. The most common mistakes are: 1. Netlink is not configured in the
kernel. The message is: Cannot open netlink socket: Invalid value 2. RTNETLINK is not configured in the
kernel. In this case one of the following messages may be printed, depending on the command: Cannot talk to
rtnetlink: Connection refused Cannot send dump request: Connection refused 3. Option
CONFIG_IP_MULTIPLE_TABLES was not selected when configuring kernel. In this case any attempt to
use commandip rule will fail, e.g.;

jd@home $ ip rule list RTNETLINK error: Invalid argument dump terminated

 Linux Networking−HOWTO:

9.Kernel 2.2 IP Command Reference (Work In Progress) 60

10.Using common PC hardware

10.1 ISDN

The Integrated Services Digital Network (ISDN) is a series of standards that specify a general purpose
switched digital data network. An ISDN `call' creates a synchronous point to point data service to the
destination. ISDN is generally delivered on a high speed link that is broken down into a number of discrete
channels. There are two different types of channels, the `B Channels' which will actually carry the user data
and a single channel called the `D channel' which is used to send control information to the ISDN exchange
to establish calls and other functions. In Australia for example, ISDN may be delivered on a 2Mbps link that
is broken into 30 discrete 64kbps B channels with one 64kbps D channel. Any number of channels may be
used at a time and in any combination. You could for example establish 30 separate calls to 30 different
destinations at 64kbps each, or you could establish 15 calls to 15 different destinations at 128kbps each (two
channels used per call), or just a small number of calls and leave the rest idle. A channel may be used for
either incoming or outgoing calls. The original intention of ISDN was to allow Telecommunications
companies to provide a single data service which could deliver either telephone (via digitised voice) or data
services to your home or business without requiring you to make any special configuration changes.

There are a few different ways to connect your computer to an ISDN service. One way is to use a device
called a `Terminal Adaptor' which plugs into the Network Terminating Unit that you telecommunications
carrier will have installed when you got your ISDN service and presents a number of serial interfaces. One of
those interfaces is used to enter commands to establish calls and configuration and the others are actually
connected to the network devices that will use the data circuits when they are established. Linux will work in
this sort of configuration without modification, you just treat the port on the Terminal Adaptor like you
would treat any other serial device. Another way, which is the way the kernel ISDN support is designed for
allows you to install an ISDN card into your Linux machine and then has your Linux software handle the
protocols and make the calls itself.

Kernel Compile Options:

 ISDN subsystem −−−>
 <*> ISDN support
 [] Support synchronous PPP
 [] Support audio via ISDN
 < > ICN 2B and 4B support
 < > PCBIT−D support
 < > Teles/NICCY1016PC/Creatix support

The Linux implementation of ISDN supports a number of different types of internal ISDN cards. These are
those listed in the kernel configuration options:

• ICN 2B and 4B
• Octal PCBIT−D
• Teles ISDN−cards and compatibles

 Linux Networking−HOWTO:

10.Using common PC hardware 61

Some of these cards require software to be downloaded to them to make them operational. There is a separate
utility to do this with.

Full details on how to configure the Linux ISDN support is available from the
/usr/src/linux/Documentation/isdn/ directory and an FAQ dedicated to isdn4linux is available at
www.lrz−muenchen.de. (You can click on the english flag to get an english version).

A note about PPP. The PPP suite of protocols will operate over either asynchronous or synchronous serial
lines. The commonly distributed PPP daemon for Linux `pppd' supports only asynchronous mode. If you
wish to run the PPP protocols over your ISDN service you need a specially modified version. Details of
where to find it are available in the documentation referred to above.

10.2 PLIP for Linux−2.0

PLIP device names are `plip0', `plip1 and plip2.

Kernel Compile Options:

 Network device support −−−>
 <*> PLIP (parallel port) support

plip (Parallel Line IP), is like SLIP, in that it is used for providing a point to point network connection
between two machines, except that it is designed to use the parallel printer ports on your machine instead of
the serial ports (a cabling diagram in included in the cabling diagram section later in this document). Because
it is possible to transfer more than one bit at a time with a parallel port, it is possible to attain higher speeds
with the plip interface than with a standard serial device. In addition, even the simplest of parallel ports,
printer ports, can be used in lieu of you having to purchase comparatively expensive 16550AFN UART's for
your serial ports. PLIP uses a lot of CPU compared to a serial link and is most certainly not a good option if
you can obtain some cheap ethernet cards, but it will work when nothing else is available and will work quite
well. You should expect a data transfer rate of about 20 kilobytes per second when a link is running well.

The PLIP device drivers competes with the parallel device driver for the parallel port hardware. If you wish
to use both drivers then you should compile them both as modules to ensure that you are able to select which
port you want to use for PLIP and which ports you want for the printer driver. Refer to the ``Mudules
mini−HOWTO'' for more information on kernel module configuration.

Please note that some laptops use chipsets that will not work with PLIP because they do not allow some
combinations of signals that PLIP relies on, that printers don't use.

The Linux plip interface is compatible with the Crynwyr Packet Driver PLIP/ and this will mean that you can
connect your Linux machine to a DOS machine running any other sort of tcp/ip software via plip.

In the 2.0.* series kernel the plip devices are mapped to i/o port and IRQ as follows:

 device i/o IRQ
 −−−−−− −−−−− −−−

 Linux Networking−HOWTO:

10.2 PLIP for Linux−2.0 62

http://www.lrz-muenchen.de/~ui161ab/www/isdn/

 plip0 0x3bc 5
 plip1 0x378 7
 plip2 0x278 2

If your parallel ports don't match any of the above combinations then you can change the IRQ of a port using
the ifconfig command using the `irq' parameter (be sure to enable IRQ's on your printer ports in your ROM
BIOS if it supports this option). As an alternative, you can specify ``io='' annd ``irq='' options on the
insmod command line, if you use modules. For example:

 root# insmod plip.o io=0x288 irq=5

PLIP operation is controlled by two timeouts, whose default values are probably ok in most cases. You will
probably need to increase them if you have an especially slow computer, in which case the timers to increase
are actually on the other computer. A program called plipconfig exists that allows you to change these timer
settings without recompiling your kernel. It is supplied with many Linux distributions.

To configure a plip interface, you will need to invoke the following commands (or add them to your
initialization scripts):

 root# /sbin/ifconfig plip1 localplip pointopoint remoteplip
 root# /sbin/route add remoteplip plip1

Here, the port being used is the one at I/O address 0x378; localplip amd remoteplip are the names or IP
addresses used over the PLIP cable. I personally keep them in my /etc/hosts database:

 # plip entries
 192.168.3.1 localplip
 192.168.3.2 remoteplip

The pointopoint parameter has the same meaning as for SLIP, in that it specifies the address of the machine at
the other end of the link.

In almost all respects you can treat a plip interface as though it were a SLIP interface, except that neither
dip nor slattach need be, nor can be, used.

Further information on PLIP may be obtained from the ``PLIP mini−HOWTO''.

PLIP for Linux−2.2

During development of the 2.1 kernel versions, support for the parallel port was changed to a better setup.

Kernel Compile Options:

 Linux Networking−HOWTO:

PLIP for Linux−2.2 63

 General setup −−−>
 [*] Parallel port support
 Network device support −−−>
 <*> PLIP (parallel port) support

The new code for PLIP behaves like the old one (use the same ifconfig and route commands as in the
previous section, but initialization of the device is different due to the advanced parallel port support.

The ``first'' PLIP device is always called ``plip0'', where first is the first device detected by the system,
similarly to what happens for Ethernet devices. The actual parallel port being used is one of the available
ports, as shown in /proc/parport. For example, if you have only one parallel port, you'll only have a
directory called /proc/parport/0.

If your kernel didn't detect the IRQ number used by your port, ``insmod plip'' will fail; in this case just
write the right number to /proc/parport/0/irq and reinvoke insmod.

Complete information about parallel port management is available in the file
Documentation/parport.txt, part of your kernel sources.

10.3 PPP

Many people have problems with Linux and PPP, with the increasing amount of technologies being used to
authenticate it is becoming more difficult to manage PPP links. Although the following information is
detailed it may be overdone if you are just looking to set up a basic dialup link. The majority of ISP's out
there use PAP (Plain Text Authentication Protocol). Since this is the case I STRONGLY suggest that you look
at the following programs to help manage your links.

LinuxconfCOAS

Both of these programs provide menu based configuration for PPP. I again suggest that you use the programs
listed above. It will make your life much easier. LinuxConf works with most distributions and it is distributed
with RedHat. COAS comes with Caldera and SUSE has a program called YAST. I have no experience with
YAST, if someone sends me a (blatant hint)machine I will load SUSE and document YAST.

PPP devices names are `ppp0', `ppp1, etc. Devices are numbered sequentially with the first device
configured receiving `0'.

Kernel Compile Options:

 Networking options −−−>
 <*> PPP (point−to−point) support

PPP configuration is covered in detail in the PPP−HOWTO. The PPP Howto is severly outdated and I will try
to get more information for the manual PPP configuration as soon as I can.

 Linux Networking−HOWTO:

10.3 PPP 64

http://www.solucorp.qc.ca/linuxconf
http://www.coas.org/
PPP-HOWTO.html

Maintaining a permanent connection to the net with pppd.

If you are fortunate enough to have a semi permanent connection to the net and would like to have your
machine automatically redial your PPP connection if it is lost then here is a simple trick to do so.

Configure PPP such that it can be started by the root user by issuing the command:

pppd

Be sure that you have the `−detach' option configured in your /etc/ppp/options file. Then, insert the
following line into your /etc/inittab file, down with the getty definitions:

pd:23:respawn:/usr/sbin/pppd

This will cause the init program to spawn and monitor the pppd program and automatically restart it if it dies.

10.4 SLIP client − (Antiquated)

SLIP devices are named `sl0', `sl1' etc. with the first device configured being assigned `0' and the rest
incrementing sequentially as they are configured.

Kernel Compile Options:

 Network device support −−−>
 [*] Network device support
 <*> SLIP (serial line) support
 [] CSLIP compressed headers
 [] Keepalive and linefill
 [] Six bit SLIP encapsulation

SLIP (Serial Line Internet Protocol) allows you to use tcp/ip over a serial line, be that a phone line with a
dialup modem, or a leased line of some sort. Of course to use SLIP you need access to a SLIP−server in your
area. Many universities and businesses provide SLIP access all over the world.

Slip uses the serial ports on your machine to carry IP datagrams. To do this it must take control of the serial
device. Slip device names are named sl0, sl1 etc. How do these correspond to your serial devices ? The
networking code uses what is called an ioctl (i/o control) call to change the serial devices into SLIP devices.
There are two programs supplied that can do this, they are called dip and slattach

dip

dip (Dialup IP) is a smart program that is able to set the speed of the serial device, command your modem to
dial the remote end of the link, automatically log you into the remote server, search for messages sent to you
by the server and extract information for them such as your IP address and perform the ioctl necessary to
switch your serial port into SLIP mode. dip has a powerful scripting ability and it is this that you can exploit
to automate your logon procedure.

 Linux Networking−HOWTO:

Maintaining a permanent connection to the net with pppd. 65

You can find it at: metalab.unc.edu.

To install it, try the following:

 user% tar xvzf dip337o−uri.tgz
 user% cd dip−3.3.7o
 user% vi Makefile
 root# make install

The Makefile assumes the existence of a group called uucp, but you might like to change this to either
dip or SLIP depending on your configuration.

slattach

slattach as contrasted with dip is a very simple program, that is very easy to use, but does not have the
sophistication of dip. It does not have the scripting ability, all it does is configure your serial device as a SLIP
device. It assumes you have all the information you need and the serial line is established before you invoke
it. slattach is ideal to use where you have a permanent connection to your server, such as a physical cable, or
a leased line.

When do I use which ?

You would use dip when your link to the machine that is your SLIP server is a dialup modem, or some other
temporary link. You would use slattach when you have a leased line, perhaps a cable, between your machine
and the server and there is no special action needed to get the link working. See section `Permanent Slip
connection' for more information.

Configuring SLIP is much like configuring an Ethernet interface (read section `Configuring an ethernet
device' above). However there are a few key differences.

First of all, SLIP links are unlike ethernet networks in that there is only ever two hosts on the network, one at
each end of the link. Unlike an ethernet that is available for use as soon are you are cabled, with SLIP,
depending on the type of link you have, you may have to initialize your network connection in some special
way.

If you are using dip then this would not normally be done at boot time, but at some time later, when you were
ready to use the link. It is possible to automate this procedure. If you are using slattach then you will
probably want to add a section to your rc.inet1 file. This will be described soon.

There are two major types of SLIP servers: Dynamic IP address servers and static IP address servers. Almost
every SLIP server will prompt you to login using a username and password when dialing in. dip can handle
logging you in automatically.

 Linux Networking−HOWTO:

slattach 66

ftp://metalab.unc.edu/pub/Linux/system/Network/serial/dip/dip337o-uri.tgz

Static SLIP server with a dialup line and DIP.

A static SLIP server is one in which you have been supplied an IP address that is exclusively yours. Each
time you connect to the server, you will configure your SLIP port with that address. The static SLIP server
will answer your modem call, possibly prompt you for a username and password, and then route any
datagrams destined for your address to you via that connection. If you have a static server, then you may want
to put entries for your hostname and IP address (since you know what it will be) into your /etc/hosts.
You should also configure some other files such as: rc.inet2, host.conf, resolv.conf,
/etc/HOSTNAME and rc.local. Remember that when configuring rc.inet1, you don't need to add
any special commands for your SLIP connection since it is dip that does all of the hard work for you in
configuring your interface. You will need to give dip the appropriate information and it will configure the
interface for you after commanding the modem to establish the call and logging you into your SLIP server.

If this is how your SLIP server works then you can move to section `Using Dip' to learn how to configure
dip appropriately.

Dynamic SLIP server with a dialup line and DIP.

A dynamic SLIP server is one which allocates you an IP address randomly, from a pool of addresses, each
time you logon. This means that there is no guarantee that you will have any particular address each time, and
that address may well be used by someone else after you have logged off. The network administrator who
configured the SLIP server will have assigned a pool of address for the SLIP server to use, when the server
receives a new incoming call, it finds the first unused address, guides the caller through the login process and
then prints a welcome message that contains the IP address it has allocated and will proceed to use that IP
address for the duration of that call.

Configuring for this type of server is similar to configuring for a static server, except that you must add a step
where you obtain the IP address that the server has allocated for you and configure your SLIP device with
that.

Again, dip does the hard work and new versions are smart enough to not only log you in, but to also be able
to automatically read the IP address printed in the welcome message and store it so that you can have it
configure your SLIP device with it.

If this is how your SLIP server works then you can move to section `Using Dip' to learn how to configure
dip appropriately.

Using DIP.

As explained earlier, dip is a powerful program that can simplify and automate the process of dialing into the
SLIP server, logging you in, starting the connection and configuring your SLIP devices with the appropriate
ifconfig and route commands.

Essentially to use dip you'll write a `dip script', which is basically a list of commands that dip understands
that tell dip how to perform each of the actions you want it to perform. See sample.dip that comes
supplied with dip to get an idea of how it works. dip is quite a powerful program, with many options. Instead
of going into all of them here you should look at the man page, README and sample files that will have
come with your version of dip.

 Linux Networking−HOWTO:

Static SLIP server with a dialup line and DIP. 67

You may notice that the sample.dip script assumes that you're using a static SLIP server, so you know
what your IP address is beforehand. For dynamic SLIP servers, the newer versions of dip include a command
you can use to automatically read and configure your SLIP device with the IP address that the dynamic server
allocates for you. The following sample is a modified version of the sample.dip that came supplied with
dip337j−uri.tgz and is probably a good starting point for you. You might like to save it as
/etc/dipscript and edit it to suit your configuration:

#
sample.dip Dialup IP connection support program.
#
This file (should show) shows how to use the DIP
This file should work for Annex type dynamic servers, if you
use a static address server then use the sample.dip file that
comes as part of the dip337−uri.tgz package.
#
#
Version: @(#)sample.dip 1.40 07/20/93
#
Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
#

main:
Next, set up the other side's name and address.
My dialin machine is called 'xs4all.hacktic.nl' (== 193.78.33.42)
get $remote xs4all.hacktic.nl
Set netmask on sl0 to 255.255.255.0
netmask 255.255.255.0
Set the desired serial port and speed.
port cua02
speed 38400

Reset the modem and terminal line.
This seems to cause trouble for some people!
reset

Note! "Standard" pre−defined "errlevel" values:
0 − OK
1 − CONNECT
2 − ERROR
#
You can change those grep'ping for "addchat()" in *.c...

Prepare for dialing.
send ATQ0V1E1X4\r
wait OK 2
if $errlvl != 0 goto modem_trouble
dial 555−1234567
if $errlvl != 1 goto modem_trouble

We are connected. Login to the system.
login:
sleep 2
wait ogin: 20
if $errlvl != 0 goto login_trouble
send MYLOGIN\n
wait ord: 20
if $errlvl != 0 goto password_error
send MYPASSWD\n
loggedin:

 Linux Networking−HOWTO:

Static SLIP server with a dialup line and DIP. 68

We are now logged in.
wait SOMEPROMPT 30
if $errlvl != 0 goto prompt_error

Command the server into SLIP mode
send SLIP\n
wait SLIP 30
if $errlvl != 0 goto prompt_error

Get and Set your IP address from the server.
Here we assume that after commanding the SLIP server into SLIP
mode that it prints your IP address
get $locip remote 30
if $errlvl != 0 goto prompt_error

Set up the SLIP operating parameters.
get $mtu 296
Ensure "route add −net default xs4all.hacktic.nl" will be done
default

Say hello and fire up!
done:
print CONNECTED $locip −−−> $rmtip
mode CSLIP
goto exit

prompt_error:
print TIME−OUT waiting for sliplogin to fire up...
goto error

login_trouble:
print Trouble waiting for the Login: prompt...
goto error

password:error:
print Trouble waiting for the Password: prompt...
goto error

modem_trouble:
print Trouble occurred with the modem...
error:
print CONNECT FAILED to $remote
quit

exit:
exit

The above example assumes you are calling a dynamic SLIP server, if you are calling a static SLIP server,
then the sample.dip file that comes with dip337j−uri.tgz should work for you.

When dip is given the get $local command it searches the incoming text from the remote end for a string that
looks like an IP address, ie strings numbers separated by `.' characters. This modification was put in place
specifically for dynamic SLIP servers, so that the process of reading the IP address granted by the server
could be automated.

The example above will automatically create a default route via your SLIP link, if this is not what you want,
you might have an ethernet connection that should be your default route, then remove the default command
from the script. After this script has finished running, if you do an ifconfig command, you will see that you

 Linux Networking−HOWTO:

Static SLIP server with a dialup line and DIP. 69

have a device sl0. This is your SLIP device. Should you need to, you can modify its configuration manually,
after the dip command has finished, using the ifconfig and route commands. Please note that dip allows you
to select a number of different protocols to use with the mode command, the most common example is
cSLIP for SLIP with compression. Please note that both ends of the link must agree, so you should ensure
that whatever you select agrees with what your server is set to. The above example is fairly robust and should
cope with most errors. Please refer to the dip man page for more information. Naturally you could, for
example, code the script to do such things as redial the server if it doesn't get a connection within a prescribed
period of time, or even try a series of servers if you have access to more than one.

Permanent SLIP connection using a leased line and slattach.

If you have a cable between two machines, or are fortunate enough to have a leased line, or some other
permanent serial connection between your machine and another, then you don't need to go to all the trouble
of using dip to set up your serial link. slattach is a very simple to use utility that will allow you just enough
functionality to configure your connection. Since your connection will be a permanent one, you will want to
add some commands to your rc.inet1 file. In essence all you need to do for a permanent connection is
ensure that you configure the serial device to the correct speed and switch the serial device into SLIP mode.
slattach allows you to do this with one command. Add the following to your rc.inet1 file:

 #
 # Attach a leased line static SLIP connection
 #
 # configure /dev/cua0 for 19.2kbps and cslip
 /sbin/slattach −p cslip −s 19200 /dev/cua0 &
 /sbin/ifconfig sl0 IPA.IPA.IPA.IPA pointopoint IPR.IPR.IPR.IPR up
 #
 # End static SLIP.

Where:

IPA.IPA.IPA.IPA

represents your IP address.

IPR.IPR.IPR.IPR

represents the IP address of the remote end.

slattach allocates the first unallocated SLIP device to the serial device specified. slattach starts with sl0.
Therefore the first slattach command attaches SLIP device sl0 to the serial device specified and sl1 the next
time, etc.

slattach allows you to configure a number of different protocols with the −p argument. In your case you will
use either SLIP or cSLIP depending on whether you want to use compression or not. Note: both ends must
agree on whether you want compression or not.

 Linux Networking−HOWTO:

Permanent SLIP connection using a leased line and slattach. 70

SLIP server.

If you have a machine that is perhaps network connected, that you'd like other people be able to dial into and
provide network services, then you will need to configure your machine as a server. If you want to use SLIP
as the serial line protocol, then currently you have three options as to how to configure your Linux machine
as a SLIP server. My preference would be to use the first presented, sliplogin, as it seems the easiest to
configure and understand, but I will present a summary of each, so you can make your own decision.

Slip Server using sliplogin.

sliplogin is a program that you can use in place of the normal login shell for SLIP users that converts the
terminal line into a SLIP line. It allows you to configure your Linux machine as either a static address server,
users get the same address everytime they call in, or a dynamic address server, where users get an address
allocated for them which will not necessarily be the same as the last time they called.

The caller will login as per the standard login process, entering their username and password, but instead of
being presented with a shell after their login, sliplogin is executed which searches its configuration file
(/etc/slip.hosts) for an entry with a login name that matches that of the caller. If it locates one, it
configures the line as an 8bit clean line, and uses an ioctl call to convert the line discipline to SLIP. When
this process is complete, the last stage of configuration takes place, where sliplogin invokes a shell script
which configures the SLIP interface with the relevant ip address, netmask and sets appropriate routing in
place. This script is usually called /etc/slip.login, but in a similar manner to getty, if you have certain
callers that require special initialization, then you can create configuration scripts called
/etc/slip.login.loginname that will be run instead of the default specifically for them.

There are either three or four files that you need to configure to get sliplogin working for you. I will detail
how and where to get the software and how each is configured in detail. The files are:

• /etc/passwd, for the dialin user accounts.
• /etc/slip.hosts, to contain the information unique to each dial−in user.
• /etc/slip.login, which manages the configuration of the routing that needs to be performed

for the user.
• /etc/slip.tty, which is required only if you are configuring your server for dynamic address

allocation and contains a table of addresses to allocate
• /etc/slip.logout, which contains commands to clean up after the user has hung up or logged

out.

Where to get sliplogin

You may already have the sliplogin package installed as part of your distribution, if not then sliplogin can be
obtained from: metalab.unc.edu. The tar file contains both source, precompiled binaries and a man page.

To ensure that only authorized users will be able to run sliplogin program, you should add an entry to your
/etc/group file similar to the following:

 ..
slip::13:radio,fred
 ..

 Linux Networking−HOWTO:

SLIP server. 71

ftp://metalab.unc.edu/pub/linux/system/Network/serial/sliplogin-2.1.1.tar.gz

When you install the sliplogin package, the Makefile will change the group ownership of the
sliplogin program to slip, and this will mean that only users who belong to that group will be able to
execute it. The example above will allow only users radio and fred to execute sliplogin.

To install the binaries into your /sbin directory and the man page into section 8, do the following:

cd /usr/src
gzip −dc .../sliplogin−2.1.1.tar.gz | tar xvf −
cd sliplogin−2.1.1
<..edit the Makefile if you don't use shadow passwords..>
make install

If you want to recompile the binaries before installation, add a make clean before the make install.
If you want to install the binaries somewhere else, you will need to edit the Makefileinstall rule.

Configuring /etc/passwd for Slip hosts.

Normally you would create some special logins for Slip callers in your /etc/passwd file. A convention
commonly followed is to use the hostname of the calling host with a capital `S' prefixing it. So, for example,
if the calling host is called radio then you could create a /etc/passwd entry that looked like:

Sradio:FvKurok73:1427:1:radio SLIP login:/tmp:/sbin/sliplogin

It doesn't really matter what the account is called, so long as it is meaningful to you.

Note: the caller doesn't need any special home directory, as they will not be presented with a shell from this
machine, so /tmp is a good choice. Also note that sliplogin is used in place of the normal login shell.

Configuring /etc/slip.hosts

The /etc/slip.hosts file is the file that sliplogin searches for entries matching the login name to obtain
configuration details for this caller. It is this file where you specify the ip address and netmask that will be
assigned to the caller and configured for their use. Sample entries for two hosts, one a static configuration for
host radio and another, a dynamic configuration for user host albert might look like:

#
Sradio 44.136.8.99 44.136.8.100 255.255.255.0 normal −1
Salbert 44.136.8.99 DYNAMIC 255.255.255.0 compressed 60
#

The /etc/slip.hosts file entries are:

1. the login name of the caller.
2. ip address of the server machine, ie this machine.
3. ip address that the caller will be assigned. If this field is coded DYNAMIC then an ip address will be

allocated based on the information contained in your /etc/slip.tty file discussed later.
Note: you must be using at least version 1.3 of sliplogin for this to work.

4. the netmask assigned to the calling machine in dotted decimal notation eg 255.255.255.0 for a Class

 Linux Networking−HOWTO:

Configuring /etc/passwd for Slip hosts. 72

C network mask.
5. the slip mode setting which allows you to enable/disable compression and slip other features.

Allowable values here are "normal" or "compressed".
6. a timeout parameter which specifies how long the line can remain idle (no datagrams received)

before the line is automatically disconnected. A negative value disables this feature.
7. optional arguments.

Note: You can use either hostnames or IP addresses in dotted decimal notation for fields 2 and 3. If you use
hostnames then those hosts must be resolvable, that is, your machine must be able to locate an ip address for
those hostnames, otherwise the script will fail when it is called. You can test this by trying trying to telnet to
the hostname, if you get the `Trying nnn.nnn.nnn...' message then your machine has been able to find an ip
address for that name. If you get the message `Unknown host', then it has not. If not, either use ip addresses in
dotted decimal notation, or fix up your name resolver configuration (See section Name Resolution).

The most common slip modes are:

normal

to enable normal uncompressed SLIP.

compressed

to enable van Jacobsen header compression (cSLIP)

Naturally these are mutually exclusive, you can use one or the other. For more information on the other
options available, refer to the man pages.

Configuring the /etc/slip.login file.

After sliplogin has searched the /etc/slip.hosts and found a matching entry, it will attempt to execute
the /etc/slip.login file to actually configure the SLIP interface with its ip address and netmask. The
sample /etc/slip.login file supplied with the sliplogin package looks like this:

#!/bin/sh −
#
@(#)slip.login 5.1 (Berkeley) 7/1/90
#
generic login file for a SLIP line. sliplogin invokes this with
the parameters:
$1 $2 $3 $4, $5, $6 ...
SLIPunit ttyspeed pid the arguments from the slip.host entry
#
/sbin/ifconfig $1 $5 pointopoint $6 mtu 1500 −trailers up
/sbin/route add $6
arp −s $6 <hw_addr> pub
exit 0
#

You will note that this script simply uses the ifconfig and route commands to configure the SLIP device with
its ipaddress, remote ip address and netmask and creates a route for the remote address via the SLIP device.

 Linux Networking−HOWTO:

Configuring the /etc/slip.login file. 73

Just the same as you would if you were using the slattach command.

Note also the use of Proxy ARP to ensure that other hosts on the same ethernet as the server machine will
know how to reach the dial−in host. The <hw_addr> field should be the hardware address of the ethernet
card in the machine. If your server machine isn't on an ethernet network then you can leave this line out
completely.

Configuring the /etc/slip.logout file.

When the call drops out, you want to ensure that the serial device is restored to its normal state so that future
callers will be able to login correctly. This is achieved with the use of the /etc/slip.logout file. It is
quite simple in format and is called with the same argument as the /etc/slip.login file.

 #!/bin/sh −
 #
 # slip.logout
 #
 /sbin/ifconfig $1 down
 arp −d $6
 exit 0
 #

All it does is `down' the interface which will delete the manual route previously created. It also uses the
arp command to delete any proxy arp put in place, again, you don't need the arp command in the script if
your server machine does not have an ethernet port.

Configuring the /etc/slip.tty file.

If you are using dynamic ip address allocation (have any hosts configured with the DYNAMIC keyword in the
/etc/slip.hosts file, then you must configure the /etc/slip.tty file to list what addresses are
assigned to what port. You only need this file if you wish your server to dynamically allocate addresses to
users.

The file is a table that lists the tty devices that will support dial−in SLIP connections and the ip address that
should be assigned to users who call in on that port. Its format is as follows:

slip.tty tty −> IP address mappings for dynamic SLIP
format: /dev/tty?? xxx.xxx.xxx.xxx
#
/dev/ttyS0 192.168.0.100
/dev/ttyS1 192.168.0.101
#

What this table says is that callers that dial in on port /dev/ttyS0 who have their remote address field in
the /etc/slip.hosts file set to DYNAMIC will be assigned an address of 192.168.0.100.

In this way you need only allocate one address per port for all users who do not require an dedicated address
for themselves. This helps you keep the number of addresses you need down to a minimum to avoid wastage.

 Linux Networking−HOWTO:

Configuring the /etc/slip.logout file. 74

Slip Server using dip.

Let me start by saying that some of the information below came from the dip man pages, where how to run
Linux as a SLIP server is briefly documented. Please also beware that the following has been based on the
dip337o−uri.tgz package and probably will not apply to other versions of dip. dip has an input mode of
operation, where it automatically locates an entry for the user who invoked it and configures the serial line as
a SLIP link according to information it finds in the /etc/diphosts file. This input mode of operation is
activated by invoking dip as diplogin. This therefore is how you use dip as a SLIP server, by creating special
accounts where diplogin is used as the login shell. The first thing you will need to do is to make a symbolic
link as follows:

ln −sf /usr/sbin/dip /usr/sbin/diplogin

You then need to add entries to both your /etc/passwd and your /etc/diphosts files. The entries you
need to make are formatted as follows: To configure Linux as a SLIP server with dip, you need to create
some special SLIP accounts for users, where dip (in input mode) is used as the login shell. A suggested
convention is that of having all SLIP accounts begin with a capital `S', eg `Sfredm'. A sample
/etc/passwd entry for a SLIP user looks like:

Sfredm:ij/SMxiTlGVCo:1004:10:Fred:/tmp:/usr/sbin/diplogin
^^ ^^ ^^ ^^ ^^ ^^ ^^
| | | | | | __ diplogin as login shell
| | | | | _______ Home directory
| | | | ____________ User Full Name
| | | _________________ User Group ID
| | _____________________ User ID
| _______________________________ Encrypted User Password
__ Slip User Login Name

After the user logs in, the login program, if it finds and verifies the user ok, will execute the
diplogin command. dip, when invoked as diplogin knows that it should automatically assume that it is being
used a login shell. When it is started as diplogin the first thing it does is use the getuid() function call to get
the userid of whoever has invoked it. It then searches the /etc/diphosts file for the first entry that
matches either the userid or the name of the tty device that the call has come in on and configures itself
appropriately. By judicious decision as to whether to give a user an entry in the diphosts file, or whether
to let the user be given the default configuration you can build your server in such a way that you can have a
mix of static and dynamically assigned address users. dip will automatically add a `Proxy−ARP' entry if
invoked in input mode, so you do not need to worry about manually adding such entries.

Configuring /etc/diphosts

/etc/diphosts is used by dip to lookup preset configurations for remote hosts. These remote hosts might
be users dialing into your linux machine, or they might be for machines that you dial into with your linux
machine. The general format for /etc/diphosts is as follows:

 ..
Suwalt::145.71.34.1:145.71.34.2:255.255.255.0:SLIP uwalt:CSLIP,1006
ttyS1::145.71.34.3:145.71.34.2:255.255.255.0:Dynamic ttyS1:CSLIP,296
 ..

 Linux Networking−HOWTO:

Slip Server using dip. 75

The fields are:

1. login name: as returned by getpwuid(getuid()) or tty name.
2. unused: compat. with passwd
3. Remote Address: IP address of the calling host, either numeric or by name
4. Local Address: IP address of this machine, again numeric or by name
5. Netmask: in dotted decimal notation
6. Comment field: put whatever you want here.
7. protocol: Slip, CSlip etc.
8. MTU: decimal number

An example /etc/net/diphosts entry for a remote SLIP user might be:

Sfredm::145.71.34.1:145.71.34.2:255.255.255.0:SLIP uwalt:SLIP,296

which specifies a SLIP link with remote address of 145.71.34.1 and MTU of 296, or:

Sfredm::145.71.34.1:145.71.34.2:255.255.255.0:SLIP uwalt:CSLIP,1006

which specifies a cSLIP−capable link with remote address 145.71.34.1 and MTU of 1006.

Therefore, all users who you wish to be allowed a statically allocated dial−up IP access should have an entry
in the /etc/diphosts. If you want users who call a particular port to have their details dynamically
allocated then you must have an entry for the tty device and do not configure a user based entry. You
should remember to configure at least one entry for each tty device that your dialup users use to ensure that
a suitable configuration is available for them regardless of which modem they call in on.

When a user logs in they will receive a normal login and password prompt at which they should enter their
SLIP−login userid and password. If these verify ok then the user will see no special messages and they
should just change into SLIP mode at their end. The user should then be able to connect ok and be configured
with the relevant parameters from the diphosts file.

SLIP server using the dSLIP package.

Matt Dillon <dillon@apollo.west.oic.com> has written a package that does not only dial−in but
also dial−out SLIP. Matt's package is a combination of small programs and scripts that manage your
connections for you. You will need to have tcsh installed as at least one of the scripts requires it. Matt
supplies a binary copy of the expect utility as it too is needed by one of the scripts. You will most likely need
some experience with expect to get this package working to your liking, but don't let that put you off.

Matt has written a good set of installation instructions in the README file, so I won't bother repeating them.

You can get the dSLIP package from its home site at: apollo.west.oic.com

/pub/linux/dillon_src/dSLIP203.tgz

or from: metalab.unc.edu

 Linux Networking−HOWTO:

SLIP server using the dSLIP package. 76

/pub/Linux/system/Network/serial/dSLIP203.tgz

Read the README file and create the /etc/passwd and /etc/group entries before doing a make
install.

11.Other Network Technologies

The following subsections are specific to particular network technologies. The information contained in these
sections does not necessarily apply to any other type of network technology. The topics are sorted
alphabetically.

11.1 ARCNet

ARCNet device names are `arc0e', `arc1e', `arc2e' etc. or `arc0s', `arc1s', `arc2s' etc. The first
card detected by the kernel is assigned `arc0e' or `arc0s' and the rest are assigned sequentially in the order
they are detected. The letter at the end signifies whether you've selected ethernet encapsulation packet format
or RFC1051 packet format.

Kernel Compile Options:

 Network device support −−−>
 [*] Network device support
 <*> ARCnet support
 [] Enable arc0e (ARCnet "Ether−Encap" packet format)
 [] Enable arc0s (ARCnet RFC1051 packet format)

Once you have your kernel properly built to support your ethernet card then configuration of the card is easy.

Typically you would use something like:

 root# ifconfig arc0e 192.168.0.1 netmask 255.255.255.0 up
 root# route add −net 192.168.0.0 netmask 255.255.255.0 arc0e

Please refer to the /usr/src/linux/Documentation/networking/arcnet.txt and
/usr/src/linux/Documentation/networking/arcnet−hardware.txt files for further
information.

ARCNet support was developed by Avery Pennarun, apenwarr@foxnet.net.

 Linux Networking−HOWTO:

11.Other Network Technologies 77

11.2 Appletalk (AF_APPLETALK)

The Appletalk support has no special device names as it uses existing network devices.

Kernel Compile Options:

 Networking options −−−>
 <*> Appletalk DDP

Appletalk support allows your Linux machine to interwork with Apple networks. An important use for this is
to share resources such as printers and disks between both your Linux and Apple computers. Additional
software is required, this is called netatalk. Wesley Craig netatalk@umich.edu represents a team called
the `Research Systems Unix Group' at the University of Michigan and they have produced the
netatalk package which provides software that implements the Appletalk protocol stack and some useful
utilities. The netatalk package will either have been supplied with your Linux distribution, or you will have to
ftp it from its home site at the University of Michigan

To build and install the package do something like:

 user% tar xvfz .../netatalk−1.4b2.tar.Z
 user% make
 root# make install

You may want to edit the `Makefile' before calling make to actually compile the software. Specifically, you
might want to change the DESTDIR variable which defines where the files will be installed later. The default
of /usr/local/atalk is fairly safe.

Configuring the Appletalk software.

The first thing you need to do to make it all work is to ensure that the appropriate entries in the
/etc/services file are present. The entries you need are:

 rtmp 1/ddp # Routing Table Maintenance Protocol
 nbp 2/ddp # Name Binding Protocol
 echo 4/ddp # AppleTalk Echo Protocol
 zip 6/ddp # Zone Information Protocol

The next step is to create the Appletalk configuration files in the /usr/local/atalk/etc directory (or
wherever you installed the package).

The first file to create is the /usr/local/atalk/etc/atalkd.conf file. Initially this file needs only
one line that gives the name of the network device that supports the network that your Apple machines are
on:

 Linux Networking−HOWTO:

11.2 Appletalk (AF_APPLETALK) 78

ftp://terminator.rs.itd.umich.edu/unix/netatalk/
ftp://terminator.rs.itd.umich.edu/unix/netatalk/
ftp://terminator.rs.itd.umich.edu/unix/netatalk/

 eth0

The Appletalk daemon program will add extra details after it is run.

Exporting a Linux filesystems via Appletalk.

You can export filesystems from your linux machine to the network so that Apple machine on the network
can share them.

To do this you must configure the /usr/local/atalk/etc/AppleVolumes.system file. There is
another configuration file called /usr/local/atalk/etc/AppleVolumes.default which has
exactly the same format and describes which filesystems users connecting with guest privileges will receive.

Full details on how to configure these files and what the various options are can be found in the afpd man
page.

A simple example might look like:

 /tmp Scratch
 /home/ftp/pub "Public Area"

Which would export your /tmp filesystem as AppleShare Volume `Scratch' and your ftp public directory as
AppleShare Volume `Public Area'. The volume names are not mandatory, the daemon will choose some for
you, but it won't hurt to specify them anyway.

Sharing your Linux printer across Appletalk.

You can share your linux printer with your Apple machines quite simply. You need to run the papd program
which is the Appletalk Printer Access Protocol Daemon. When you run this program it will accept requests
from your Apple machines and spool the print job to your local line printer daemon for printing.

You need to edit the /usr/local/atalk/etc/papd.conf file to configure the daemon. The syntax of
this file is the same as that of your usual /etc/printcap file. The name you give to the definition is
registered with the Appletalk naming protocol, NBP.

A sample configuration might look like:

 TricWriter:\
 :pr=lp:op=cg:

Which would make a printer named `TricWriter' available to your Appletalk network and all accepted jobs
would be printed to the linux printer `lp' (as defined in the /etc/printcap file) using lpd. The entry
`op=cg' says that the linux user `cg' is the operator of the printer.

 Linux Networking−HOWTO:

Exporting a Linux filesystems via Appletalk. 79

Starting the appletalk software.

Ok, you should now be ready to test this basic configuration. There is an rc.atalk file supplied with the
netatalk package that should work ok for you, so all you should have to do is:

 root# /usr/local/atalk/etc/rc.atalk

and all should startup and run ok. You should see no error messages and the software will send messages to
the console indicating each stage as it starts.

Testing the appletalk software.

To test that the software is functioning properly, go to one of your Apple machines, pull down the Apple
menu, select the Chooser, click on AppleShare, and your Linux box should appear.

Caveats of the appletalk software.

• You may need to start the Appletalk support before you configure your IP network. If you have
problems starting the Appletalk programs, or if after you start them you have trouble with your IP
network, then try starting the Appletalk software before you run your /etc/rc.d/rc.inet1 file.

• The afpd (Apple Filing Protocol Daemon) severely messes up your hard disk. Below the mount
points it creates a couple of directories called ``.AppleDesktop'' and Network Trash
Folder. Then, for each directory you access it will create a .AppleDouble below it so it can
store resource forks, etc. So think twice before exporting /, you will have a great time cleaning up
afterwards.

• The afpd program expects clear text passwords from the Macs. Security could be a problem, so be
very careful when you run this daemon on a machine connected to the Internet, you have yourself to
blame if somebody nasty does something bad.

• The existing diagnostic tools such as netstat and ifconfig don't support Appletalk. The raw
information is available in the /proc/net/ directory if you need it.

More information

For a much more detailed description of how to configure Appletalk for Linux refer to Anders Brownworth
Linux Netatalk−HOWTO page at thehamptons.com.

11.3 ATM

Werner Almesberger <werner.almesberger@lrc.di.epfl.ch> is managing a project to provide
Asynchronous Transfer Mode support for Linux. Current information on the status of the project may be
obtained from: lrcwww.epfl.ch.

 Linux Networking−HOWTO:

Starting the appletalk software. 80

http://thehamptons.com/anders/netatalk/
http://lrcwww.epfl.ch/linux-atm/

11.4 AX25 (AF_AX25)

AX.25 device names are `sl0', `sl1', etc. in 2.0.* kernels or `ax0', `ax1', etc. in 2.1.* kernels.

Kernel Compile Options:

 Networking options −−−>
 [*] Amateur Radio AX.25 Level 2

The AX25, Netrom and Rose protocols are covered by the AX25−HOWTO. These protocols are used by
Amateur Radio Operators world wide in packet radio experimentation.

Most of the work for implementation of these protocols has been done by Jonathon Naylor,
jsn@cs.nott.ac.uk.

11.5 DECNet

Support for DECNet is currently being worked on. You should expect it to appear in a late 2.1.* kernel.

11.6 FDDI

FDDI device names are `fddi0', `fddi1', `fddi2' etc. The first card detected by the kernel is assigned
`fddi0' and the rest are assigned sequentially in the order they are detected.

Larry Stefani, lstefani@ultranet.com, has developed a driver for the Digital Equipment Corporation
FDDI EISA and PCI cards.

Kernel Compile Options:

 Network device support −−−>
 [*] FDDI driver support
 [*] Digital DEFEA and DEFPA adapter support

When you have your kernel built to support the FDDI driver and installed, configuration of the FDDI
interface is almost identical to that of an ethernet interface. You just specify the appropriate FDDI interface
name in the ifconfig and route commands.

 Linux Networking−HOWTO:

11.4 AX25 (AF_AX25) 81

AX25-HOWTO.html

11.7 Frame Relay

The Frame Relay device names are `dlci00', `dlci01' etc for the DLCI encapsulation devices and
`sdla0', `sdla1' etc for the FRAD(s).

Frame Relay is a new networking technology that is designed to suit data communications traffic that is of a
`bursty' or intermittent nature. You connect to a Frame Relay network using a Frame Relay Access Device
(FRAD). The Linux Frame Relay supports IP over Frame Relay as described in RFC−1490.

Kernel Compile Options:

 Network device support −−−>
 <*> Frame relay DLCI support (EXPERIMENTAL)
 (24) Max open DLCI
 (8) Max DLCI per device
 <*> SDLA (Sangoma S502/S508) support

Mike McLagan, mike.mclagan@linux.org, developed the Frame Relay support and
configuration tools. Currently the only FRAD I know of that are supported are the Sangoma
TechnologiesS502A, S502E and S508. and the Emerging Technologies. The Emerging
Technologies website is here.

I would like to state something here. I have personal experience with Emerging Technologies and I
do not reccomend them. I found them to be very unprofessional and extremely rude. If anyone else
has had a good experience with them I would like to know. I will say this for them, their product is
flexible and appears to be stable.

To configure the FRAD and DLCI devices after you have rebuilt your kernel you will need the Frame
Relay configuration tools. These are available from ftp.invlogic.com.

Compiling and installing the tools is straightforward, but the lack of a top level Makefile makes it a
fairly manual process:

 user% tar xvfz .../frad−0.15.tgz
 user% cd frad−0.15
 user% for i in common dlci frad; make −C $i clean; make −C $i; done
 root# mkdir /etc/frad
 root# install −m 644 −o root −g root bin/*.sfm /etc/frad
 root# install −m 700 −o root −g root frad/fradcfg /sbin
 rppt# install −m 700 −o root −g root dlci/dlcicfg /sbin

Note that the previous commands use sh syntax, if you use a csh flavour instead (like tcsh), the
for loop will look different. After installing the tools you need to create an
/etc/frad/router.conf file. You can use this template, which is a modified version of one of
the example files:

/etc/frad/router.conf
This is a template configuration for frame relay.

 Linux Networking−HOWTO:

11.7 Frame Relay 82

http://www.sangoma.com/
http://www.sangoma.com/
http://www.etinc.com/
ftp://ftp.invlogic.com/pub/linux/fr/frad-0.15.tgz

All tags are included. The default values are based on the code
supplied with the DOS drivers for the Sangoma S502A card.
#
A '#' anywhere in a line constitutes a comment
Blanks are ignored (you can indent with tabs too)
Unknown [] entries and unknown keys are ignored
#

[Devices]
Count=1 # number of devices to configure
Dev_1=sdla0 # the name of a device
#Dev_2=sdla1 # the name of a device

Specified here, these are applied to all devices and can be overridden for
each individual board.
#
Access=CPE
Clock=Internal
KBaud=64
Flags=TX
#
MTU=1500 # Maximum transmit IFrame length, default is 4096
T391=10 # T391 value 5 − 30, default is 10
T392=15 # T392 value 5 − 30, default is 15
N391=6 # N391 value 1 − 255, default is 6
N392=3 # N392 value 1 − 10, default is 3
N393=4 # N393 value 1 − 10, default is 4

Specified here, these set the defaults for all boards
CIRfwd=16 # CIR forward 1 − 64
Bc_fwd=16 # Bc forward 1 − 512
Be_fwd=0 # Be forward 0 − 511
CIRbak=16 # CIR backward 1 − 64
Bc_bak=16 # Bc backward 1 − 512
Be_bak=0 # Be backward 0 − 511

#
#
Device specific configuration
#
#

#
The first device is a Sangoma S502E
#
[sdla0]
Type=Sangoma # Type of the device to configure, currently only
 # SANGOMA is recognized
#
These keys are specific to the 'Sangoma' type
#
The type of Sangoma board − S502A, S502E, S508
Board=S502E
#
The name of the test firmware for the Sangoma board
Testware=/usr/src/frad−0.10/bin/sdla_tst.502
#
The name of the FR firmware
Firmware=/usr/src/frad−0.10/bin/frm_rel.502
#
Port=360 # Port for this particular card

 Linux Networking−HOWTO:

11.7 Frame Relay 83

Mem=C8 # Address of memory window, A0−EE, depending on card
IRQ=5 # IRQ number, do not supply for S502A
DLCIs=1 # Number of DLCI's attached to this device
DLCI_1=16 # DLCI #1's number, 16 − 991
DLCI_2=17
DLCI_3=18
DLCI_4=19
DLCI_5=20
#
Specified here, these apply to this device only,
and override defaults from above
#
Access=CPE # CPE or NODE, default is CPE
Flags=TXIgnore,RXIgnore,BufferFrames,DropAborted,Stats,MCI,AutoDLCI
Clock=Internal # External or Internal, default is Internal
Baud=128 # Specified baud rate of attached CSU/DSU
MTU=2048 # Maximum transmit IFrame length, default is 4096
T391=10 # T391 value 5 − 30, default is 10
T392=15 # T392 value 5 − 30, default is 15
N391=6 # N391 value 1 − 255, default is 6
N392=3 # N392 value 1 − 10, default is 3
N393=4 # N393 value 1 − 10, default is 4

#
The second device is some other card
#
[sdla1]
Type=FancyCard # Type of the device to configure.
Board= # Type of Sangoma board
Key=Value # values specific to this type of device

#
DLCI Default configuration parameters
These may be overridden in the DLCI specific configurations
#
CIRfwd=64 # CIR forward 1 − 64
Bc_fwd=16 # Bc forward 1 − 512
Be_fwd=0 # Be forward 0 − 511
CIRbak=16 # CIR backward 1 − 64
Bc_bak=16 # Bc backward 1 − 512
Be_bak=0 # Be backward 0 − 511

#
DLCI Configuration
These are all optional. The naming convention is
[DLCI_D<devicenum>_<DLCI_Num>]
#

[DLCI_D1_16]
IP=
Net=
Mask=
Flags defined by Sangoma: TXIgnore,RXIgnore,BufferFrames
DLCIFlags=TXIgnore,RXIgnore,BufferFrames
CIRfwd=64
Bc_fwd=512
Be_fwd=0
CIRbak=64
Bc_bak=512
Be_bak=0

 Linux Networking−HOWTO:

11.7 Frame Relay 84

[DLCI_D2_16]
IP=
Net=
Mask=
Flags defined by Sangoma: TXIgnore,RXIgnore,BufferFrames
DLCIFlags=TXIgnore,RXIgnore,BufferFrames
CIRfwd=16
Bc_fwd=16
Be_fwd=0
CIRbak=16
Bc_bak=16
Be_bak=0

When you've built your /etc/frad/router.conf file the only step remaining is to configure
the actual devices themselves. This is only a little trickier than a normal network device
configuration, you need to remember to bring up the FRAD device before the DLCI encapsulation
devices. These commands are best hosted in a shell script, due to their number:

 #!/bin/sh
 # Configure the frad hardware and the DLCI parameters
 /sbin/fradcfg /etc/frad/router.conf || exit 1
 /sbin/dlcicfg file /etc/frad/router.conf
 #
 # Bring up the FRAD device
 ifconfig sdla0 up
 #
 # Configure the DLCI encapsulation interfaces and routing
 ifconfig dlci00 192.168.10.1 pointopoint 192.168.10.2 up
 route add −net 192.168.10.0 netmask 255.255.255.0 dlci00
 #
 ifconfig dlci01 192.168.11.1 pointopoint 192.168.11.2 up
 route add −net 192.168.11.0 netmask 255.255.255.0 dlci00
 #
 route add default dev dlci00
 #

11.8 IPX (AF_IPX)

The IPX protocol is most commonly utilized in Novell NetWare(tm) local area network environments. Linux
includes support for this protocol and may be configured to act as a network endpoint, or as a router for IPX.

Kernel Compile Options:

 Networking options −−−>
 [*] The IPX protocol
 [] Full internal IPX network

The IPX protocol and the NCPFS are covered in greater depth in the IPX−HOWTO.

 Linux Networking−HOWTO:

11.8 IPX (AF_IPX) 85

IPX-HOWTO.html

11.9 NetRom (AF_NETROM)

NetRom device names are `nr0', `nr1', etc.

Kernel Compile Options:

 Networking options −−−>
 [*] Amateur Radio AX.25 Level 2
 [*] Amateur Radio NET/ROM

The AX25, Netrom and Rose protocols are covered by the AX25−HOWTO. These protocols are used by
Amateur Radio Operators world wide in packet radio experimentation.

Most of the work for implementation of these protocols has been done by Jonathon Naylor,
jsn@cs.nott.ac.uk.

11.10 Rose protocol (AF_ROSE)

Rose device names are `rs0', `rs1', etc. in 2.1.* kernels. Rose is available in the 2.1.* kernels.

Kernel Compile Options:

 Networking options −−−>
 [*] Amateur Radio AX.25 Level 2
 <*> Amateur Radio X.25 PLP (Rose)

The AX25, Netrom and Rose protocols are covered by the AX25−HOWTO. These protocols are used by
Amateur Radio Operators world wide in packet radio experimentation.

Most of the work for implementation of these protocols has been done by Jonathon Naylor,
jsn@cs.nott.ac.uk.

11.11 SAMBA − `NetBEUI', `NetBios', `CIFS' support.

SAMBA is an implementation of the Session Management Block protocol. Samba allows Microsoft and
other systems to mount and use your disks and printers.

SAMBA and its configuration are covered in detail in the SMB−HOWTO.

 Linux Networking−HOWTO:

11.9 NetRom (AF_NETROM) 86

AX25-HOWTO.html
AX25-HOWTO.html
SMB-HOWTO.html

11.12 STRIP support (Starmode Radio IP)

STRIP device names are `st0', `st1', etc.

Kernel Compile Options:

 Network device support −−−>
 [*] Network device support

 [*] Radio network interfaces
 < > STRIP (Metricom starmode radio IP)

STRIP is a protocol designed specifically for a range of Metricom radio modems for a research project being
conducted by Stanford University called the MosquitoNet Project. There is a lot of interesting reading here,
even if you aren't directly interested in the project.

The Metricom radios connect to a serial port, employ spread spectrum technology and are typically capable
of about 100kbps. Information on the Metricom radios is available from the: Metricom Web Server.

At present the standard network tools and utilities do not support the STRIP driver, so you will have to
download some customized tools from the MosquitoNet web server. Details on what software you need is
available at the: MosquitoNet STRIP Page.

A summary of configuration is that you use a modified slattach program to set the line discipline of a serial
tty device to STRIP and then configure the resulting `st[0−9]' device as you would for ethernet with one
important exception, for technical reasons STRIP does not support the ARP protocol, so you must manually
configure the ARP entries for each of the hosts on your subnet. This shouldn't prove too onerous.

11.13 Token Ring

Token ring device names are `tr0', `tr1' etc. Token Ring is an IBM standard LAN protocol that avoids
collisions by providing a mechanism that allows only one station on the LAN the right to transmit at a time.
A `token' is held by one station at a time and the station holding the token is the only station allowed to
transmit. When it has transmitted its data it passes the token onto the next station. The token loops amongst
all active stations, hence the name `Token Ring'.

Kernel Compile Options:

 Network device support −−−>
 [*] Network device support

 [*] Token Ring driver support
 < > IBM Tropic chipset based adaptor support

Configuration of token ring is identical to that of ethernet with the exception of the network device name to
configure.

 Linux Networking−HOWTO:

11.12 STRIP support (Starmode Radio IP) 87

http://mosquitonet.Stanford.EDU/mosquitonet.html
http://mosquitonet.Stanford.EDU/mosquitonet.html
http://www.metricom.com/
http://www.metricom.com/
http://www.metricom.com/
http://mosquitonet.Stanford.EDU/strip.html
http://mosquitonet.Stanford.EDU/strip.html
http://mosquitonet.Stanford.EDU/strip.html

11.14 X.25

X.25 is a circuit based packet switching protocol defined by the C.C.I.T.T. (a standards body recognized
by Telecommunications companies in most parts of the world). An implementation of X.25 and LAPB are
being worked on and recent 2.1.* kernels include the work in progress.

Jonathon Naylor jsn@cs.nott.ac.uk is leading the development and a mailing list has been established
to discuss Linux X.25 related matters. To subscribe send a message to:
majordomo@vger.rutgers.edu with the text "subscribe linux−x25" in the body of the
message.

Early versions of the configuration tools may be obtained from Jonathon's ftp site at ftp.cs.nott.ac.uk.

11.15 WaveLan Card

Wavelan device names are `eth0', `eth1', etc.

Kernel Compile Options:

Network device support −−−>
 [*] Network device support

 [*] Radio network interfaces

 <*> WaveLAN support

The WaveLAN card is a spread spectrum wireless lan card. The card looks very like an ethernet card in
practice and is configured in much the same way.

You can get information on the Wavelan card from Wavelan.com.

12.Cables and Cabling

Those of you handy with a soldering iron may want to build your own cables to interconnect two linux
machines. The following cabling diagrams should assist you in this.

12.1 Serial NULL Modem cable

Not all NULL modem cables are alike. Many null modem cables do little more than trick your computer into
thinking all the appropriate signals are present and swap transmit and receive data. This is ok but means that
you must use software flow control (XON/XOFF) which is less efficient than hardware flow control. The
following cable provides the best possible signalling between machines and allows you to use hardware
(RTS/CTS) flow control.

Pin Name Pin Pin
Tx Data 2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− 3

 Linux Networking−HOWTO:

11.14 X.25 88

ftp://ftp.cs.nott.ac.uk/jsn/
http://www.wavelan.com/

Rx Data 3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− 2
RTS 4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− 5
CTS 5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− 4
Ground 7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− 7
DTR 20 −\−−−−−−−−−−−−−−−−−−−−−−−−−−− 8
DSR 6 −/
RLSD/DCD 8 −−−−−−−−−−−−−−−−−−−−−−−−−−−/− 20
 \− 6

12.2 Parallel port cable (PLIP cable)

If you intend to use the PLIP protocol between two machines then this cable will work for you irrespective of
what sort of parallel ports you have installed.

Pin Name pin pin
STROBE 1*
D0−>ERROR 2 −−−−−−−−−−− 15
D1−>SLCT 3 −−−−−−−−−−− 13
D2−>PAPOUT 4 −−−−−−−−−−− 12
D3−>ACK 5 −−−−−−−−−−− 10
D4−>BUSY 6 −−−−−−−−−−− 11
D5 7*
D6 8*
D7 9*
ACK−>D3 10 −−−−−−−−−−− 5
BUSY−>D4 11 −−−−−−−−−−− 6
PAPOUT−>D2 12 −−−−−−−−−−− 4
SLCT−>D1 13 −−−−−−−−−−− 3
FEED 14*
ERROR−>D0 15 −−−−−−−−−−− 2
INIT 16*
SLCTIN 17*
GROUND 25 −−−−−−−−−−− 25

Notes:

• Do not connect the pins marked with an asterisk `*'.
• Extra grounds are 18,19,20,21,22,23 and 24.
• If the cable you are using has a metallic shield, it should be connected to the metallic DB−25 shell at

one end only.

Warning: A miswired PLIP cable can destroy your controller card. Be very careful and double check
every connection to ensure you don't cause yourself any unnecessary work or heartache.

While you may be able to run PLIP cables for long distances, you should avoid it if you can. The
specifications for the cable allow for a cable length of about 1 metre or so. Please be very careful when
running long plip cables as sources of strong electromagnetic fields such as lightning, power lines and radio
transmitters can interfere with and sometimes even damage your controller. If you really want to connect two
of your computers over a large distance you really should be looking at obtaining a pair of thin−net ethernet
cards and running some coaxial cable.

 Linux Networking−HOWTO:

12.2 Parallel port cable (PLIP cable) 89

12.3 10base2 (thin coax) Ethernet Cabling

10base2 is an ethernet cabling standard that specifies the use of 50 ohm coaxial cable with a diameter of
about 5 millimeters. There are a couple of important rules to remember when interconnecting machines with
10base2 cabling. The first is that you must use terminators at both ends of the cabling. A terminator is a 50
ohm resistor that helps to ensure that the signal is absorbed and not reflected when it reaches the end of the
cable. Without a terminator at each end of the cabling you may find that the ethernet is unreliable or doesn't
work at all. Normally you'd use `T pieces' to interconnect the machines, so that you end up with something
that looks like:

 |==========T=============T=============T==========T==========|
 | | | |
 | | | |
 −−−−− −−−−− −−−−− −−−−−
 | | | | | | | |
 −−−−− −−−−− −−−−− −−−−−

where the `|' at either end represents a terminator, the `======' represents a length of coaxial cable with
BNC plugs at either end and the `T' represents a `T piece' connector. You should keep the length of cable
between the `T piece' and the actual ethernet card in the PC as short as possible, ideally the `T piece' will be
plugged directly into the ethernet card.

12.4 Twisted Pair Ethernet Cable

If you have only two twisted pair ethernet cards and you wish to connect them you do not require a hub. You
can cable the two cards directly together. A diagram showing how to do this is included in the
Ethernet−HOWTO

13.Glossary of Terms used in this document.

The following is a list of some of the most important terms used in this document.

ARP

This is an acronym for the Address Resolution Protocol and this is how a network machine associates
an IP Address with a hardware address.

ATM

This is an acronym for Asynchronous Transfer Mode. An ATM network packages data into standard
size blocks which it can convey efficiently from point to point. ATM is a circuit switched packet
network technology.

client

 Linux Networking−HOWTO:

12.3 10base2 (thin coax) Ethernet Cabling 90

Ethernet-HOWTO.html

This is usually the piece of software at the end of a system where the user is. There are exceptions to
this, for example, in the X11 window system it is actually the server with the user and the client runs
on the remote machine. The client is the program or end of a system that is receiving the service
provided by the server. In the case of peer to peer systems such as slip or ppp the client is taken to be
the end that initiates the connection and the remote end, being called, is taken to be the server.

datagram

A datagram is a discrete package of data and headers which contain addresses, which is the basic unit
of transmission across an IP network. You might also hear this called a `packet'.

DLCI

The DLCI is the Data Link Connection Identifier and is used to identify a unique virtual point to
point connection via a Frame Relay network. The DLCI's are normally assigned by the Frame Relay
network provider.

Frame Relay

Frame Relay is a network technology ideally suited to carrying traffic that is of bursty or sporadic
nature. Network costs are reduced by having many Frame Relay customer sharing the same network
capacity and relying on them wanting to make use of the network at slightly different times.

Hardware address

This is a number that uniquely identifies a host in a physical network at the media access layer.
Examples of this are Ethernet Addresses and AX.25 Addresses.

ISDN

This is an acronym for Integrated Services Digital Network. ISDN provides a standardized means by
which Telecommunications companies may deliver either voice or data information to a customers
premises. Technically ISDN is a circuit switched data network.

ISP

This is an acronym of Internet Service Provider. These are organizations or companies that provide
people with network connectivity to the Internet.

IP address

This is a number that uniquely identifies a TCP/IP host on the network. The address is 4 bytes long
and is usually represented in what is called the "dotted decimal notation", where each byte is
represented in decimal from with dots `.' between them.

 Linux Networking−HOWTO:

12.3 10base2 (thin coax) Ethernet Cabling 91

MSS

The Maximum Segment Size (MSS) is the largest quantity of data that can be transmitted at one time.
If you want to prevent local fragmentation MSS would equal MTU−IP header.

MTU

The Maximum Transmission Unit (MTU) is a parameter that determines the largest datagram than
can be transmitted by an IP interface without it needing to be broken down into smaller units. The
MTU should be larger than the largest datagram you wish to transmit unfragmented. Note, this only
prevents fragmentation locally, some other link in the path may have a smaller MTU and the
datagram will be fragmented there. Typical values are 1500 bytes for an ethernet interface, or 576
bytes for a SLIP interface.

route

The route is the path that your datagrams take through the network to reach their destination.

server

This is usually the piece of software or end of a system remote from the user. The server provides
some service to one or many clients. Examples of servers include ftp, Networked File System, or
Domain Name Server. In the case of peer to peer systems such as slip or ppp the server is taken to be
the end of the link that is called and the end calling is taken to be the client.

window

The window is the largest amount of data that the receiving end can accept at a given point in time.

14.Authors

14.1 Current

Joshua D. Drake

14.2 Past

Terry Dawson Alessandro Rubini

 Linux Networking−HOWTO:

14.Authors 92

15.Copyright.

Copyright Information

The NET−3/4−HOWTO,NET−3, and Networking−HOWTO, information on how to install and configure
networking support for Linux. Copyright (c) 1997 Terry Dawson, 1998 Alessandro Rubini, 1999 Joshua D.
Drake {POET} − http://www.linuxports.com/

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received
a copy of the GNU General Public License along with this program; if not, write to the: Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 Linux Networking−HOWTO:

15.Copyright. 93

http://www.linuxports.com/

	Table of Contents
	Linux Networking-HOWTO:
	Author: Joshua Drake poet@linuxports.com
	1.Introduction.
	2.Document History
	3.How to use this HOWTO.
	4.General Information about Linux Networking.
	5.Generic Network Configuration Information.
	6.Ethernet Information
	7.IP Related Information
	8.Advanced Networking with Kernel 2.2
	9.Kernel 2.2 IP Command Reference (Work In Progress)
	10.Using common PC hardware
	11.Other Network Technologies
	12.Cables and Cabling
	13.Glossary of Terms used in this document.
	14.Authors
	15.Copyright.
	1.Introduction.
	2.Document History
	2.1 Feedback
	3.How to use this HOWTO.
	3.1 Conventions used in this document
	4.General Information about Linux Networking.
	4.1 Linux Networking Resources.
	4.2 Where to get some non-linux-specific network information.
	5.Generic Network Configuration Information.
	5.1 What do I need to start ?
	Current Kernel source(Optional).
	IP Addresses, an Explanation.

	5.2 Where should I put the configuration commands ?
	5.3 Creating your network interfaces.
	5.4 Configuring a network interface. Kernels 2.0 and 2.2
	5.5 Configuring your Name Resolver.
	What's in a name ?
	What information you will need.
	/etc/resolv.conf
	/etc/host.conf
	/etc/hosts
	Running a name server

	5.6 Configuring your loopback interface.
	5.7 Routing.
	So what does the routed program do ?

	5.8 Configuring your network servers and services.
	/etc/services
	An example /etc/services file.
	/etc/inetd.conf
	An example /etc/inetd.conf

	5.9 Other miscellaneous network related configuration files.
	/etc/protocols
	/etc/networks

	5.10 Network Security and access control.
	/etc/ftpusers
	/etc/securetty
	The tcpd hosts access control mechanism.
	/etc/hosts.allow
	/etc/hosts.deny
	/etc/hosts.equiv
	Configure your ftp daemon properly.
	Network Firewalling.
	Other suggestions.

	6.Ethernet Information
	6.1 Supported Ethernet Cards
	3Com
	AMD, ATT, Allied Telesis, Ansel, Apricot
	Cabletron, Cogent, Crystal Lan
	Danpex, DEC, Digi, DLink
	Fujitsu, HP, ICL, Intel
	KTI, Macromate, NCR NE2000/1000, Netgear, New Media
	PureData, SEEQ, SMC
	Sun Lance, Sun Intel, Schneider, WD, Zenith, IBM, Enyx

	6.2 General Ethernet Information
	6.3 Using 2 or more Ethernet Cards in the same machine
	If your driver is a module (Normal with newer distros)

	7.IP Related Information
	7.1 DHCP and DHCPD
	7.2 DHCP Client Setup for users of LinuxConf
	7.3 DHCP Server Setup for Linux
	Options for DHCPD
	Starting the server

	7.4 EQL - multiple line traffic equaliser
	7.5 IP Accounting (for Linux-2.0)
	IP Accounting (for Linux-2.2)

	7.6 IP Aliasing
	7.7 IP Firewall (for Linux-2.0)
	IP Firewall (for Linux-2.2)

	7.8 IPIP Encapsulation
	A tunneled network configuration.
	A tunneled host configuration.

	7.9 IP Masquerade
	Masquerading with IPFWADM (Kernels 2.0.x)
	Masquerading with IPCHAINS

	7.10 IP Transparent Proxy
	7.11 IPv6
	7.12 Mobile IP
	7.13 Multicast
	7.14 Traffic Shaper - Changing allowed bandwidth
	8.Advanced Networking with Kernel 2.2
	8.1 The Basics
	Using the information

	8.2 Adding a route with the new ip tools
	8.3 Using NAT with Kernel 2.2
	9.Kernel 2.2 IP Command Reference (Work In Progress)
	9.1 ip
	10.Using common PC hardware
	10.1 ISDN
	10.2 PLIP for Linux-2.0
	PLIP for Linux-2.2

	10.3 PPP
	Maintaining a permanent connection to the net with pppd.

	10.4 SLIP client - (Antiquated)
	dip
	slattach
	When do I use which ?
	Static SLIP server with a dialup line and DIP.
	Dynamic SLIP server with a dialup line and DIP.
	Using DIP.
	Permanent SLIP connection using a leased line and slattach.
	SLIP server.
	Slip Server using sliplogin.
	Where to get sliplogin
	Configuring /etc/passwd for Slip hosts.
	Configuring /etc/slip.hosts
	Configuring the /etc/slip.login file.
	Configuring the /etc/slip.logout file.
	Configuring the /etc/slip.tty file.
	Slip Server using dip.
	Configuring /etc/diphosts
	SLIP server using the dSLIP package.

	11.Other Network Technologies
	11.1 ARCNet
	11.2 Appletalk (AF_APPLETALK)
	Configuring the Appletalk software.
	Exporting a Linux filesystems via Appletalk.
	Sharing your Linux printer across Appletalk.
	Starting the appletalk software.
	Testing the appletalk software.
	Caveats of the appletalk software.
	More information

	11.3 ATM
	11.4 AX25 (AF_AX25)
	11.5 DECNet
	11.6 FDDI
	11.7 Frame Relay
	11.8 IPX (AF_IPX)
	11.9 NetRom (AF_NETROM)
	11.10 Rose protocol (AF_ROSE)
	11.11 SAMBA - `NetBEUI', `NetBios', `CIFS' support.
	11.12 STRIP support (Starmode Radio IP)
	11.13 Token Ring
	11.14 X.25
	11.15 WaveLan Card
	12.Cables and Cabling
	12.1 Serial NULL Modem cable
	12.2 Parallel port cable (PLIP cable)
	12.3 10base2 (thin coax) Ethernet Cabling
	12.4 Twisted Pair Ethernet Cable
	13.Glossary of Terms used in this document.
	14.Authors
	14.1 Current
	14.2 Past
	15.Copyright.

