There are various files to edit to set up the computer for terminals. If you're lucky, you'll only need to edit /etc/inittab. One does this by editing at the console (or from any working terminal).
In order to have a login process run on a serial port when the computer starts up (or switches run levels) a getty command must be put into the /etc/inittab file. Getty GETs a TTY (a terminal) going. Each terminal needs its own getty command. There is also at least one getty command for the console in every /etc/inittab file. Find this and put the getty commands for the real terminals next to it. This file may contain sample getty lines for text terminals that are commented out so that all you need to do is to uncomment them (remove the leading #) and change a few arguments.
The arguments which are permitted depend on which getty you
use:
Two gettys best for directly connected terminals are:
If you don't have the getty you want check other distributions and the
alien
program to convert between RPM and Debian packages. The source
code may be downloaded from
Serial Software.
If you are not using modem control lines (for example if you only use the minimum number of 3 conductors: transmit, receive, and common signal ground) you should let getty know this by using a "local" flag. The format of this depends on which getty you use.
An example line in /etc/inittab:
S1:23:respawn:/sbin/getty -L 19200 ttyS1 vt102
S1 is from ttyS1. 23 means that getty is run upon entering run levels
2 or 3. respawn means that if getty is killed, it will automatically
start up (respawn) again. /sbin/getty is the getty command. The -L
means Local (ignore modem control signals). -h (not shown in the
example) enables hardware flow control (same as stty crtscts). 19200
is the baud rate. ttyS1 means /dev/ttyS1 (COM2 in MS-DOS). vt102 is
the type of terminal and this getty will set the environment variable
TERM to this value. There are no configuration files. Type "init q"
on the command line after editing getty and you should see a login
prompt.
The agetty
program will auto-detect any parity set inside the
terminal. Except it will not work if you use 8-bit data bytes with
1-bit parity. See
Agetty's parity with 8-bit data bytes. If you use stty
to set parity, agetty
will automatically unset it since it wants the parity bit to come thru
as if it was a data bit. This is because it needs to get the last bit
(possibly a parity bit) as you type your login-name so that it can
auto-detect parity. Thus if you use parity, enable it only at the
terminals and let agetty
auto-detect it and set it at the
computer. If your terminal supports received parity, the login prompt
will look garbled until you type something so that getty can detect
the parity. The garbled prompt will deter visitors, etc. from trying
to login. That could be just what you want.
There is sometimes a problem with auto detection of parity. This
happens because after you first type your login name, agetty
uses
the login
program to finish logging you in. If the first login
attempt fails, login
runs again to handle all future attempts at
logging in (including the type-in of your login-name). The problem is
that only agetty can detect parity while the login
program
doesn't detect parity. So if for some reason you wind up in the
login
program and the correct parity hasn't yet been detected,
you're in trouble since the login
program can't detect the
parity. With wrong parity, the login
program can't correctly
read what you type and you can't log in. If your terminal supports
received parity, you will continue to see a garbled screen.
One may get into this "login loop" in various ways. Suppose you only type a single letter or two for your login name and then hit return. If these letters are not sufficient for parity detection, then login runs before parity has been detected. Sometimes this problem happens if you don't have the terminal on and connected when agetty first starts up. If you get stuck in this "login" loop a solution is to just wait about a minute until agetty runs again due to "timeout".
Unfortunately, agetty can't detect this parity. It (as of late 1999) has no option for disabling the auto-detection of parity and thus will detect incorrect parity. The result is that the login process will be garbled and parity will be set wrong. Thus it doesn't seem feasible to try to use 8-bit data bytes with parity.
(This is from the old Serial-HOWTO by Greg Hankins)
Add entries for getty
to use for your terminal in the
configuration file /etc/gettydefs
if there they aren't
already there:
# 38400 bps Dumb Terminal entry
DT38400# B38400 CS8 CLOCAL # B38400 SANE -ISTRIP CLOCAL #@S @L login: #DT38400
# 19200 bps Dumb Terminal entry
DT19200# B19200 CS8 CLOCAL # B19200 SANE -ISTRIP CLOCAL #@S @L login: #DT19200
# 9600 bps Dumb Terminal entry
DT9600# B9600 CS8 CLOCAL # B9600 SANE -ISTRIP CLOCAL #@S @L login: #DT9600
If you want, you can make getty
print interesting things in the
login banner. In my examples, I have the system name and the serial
line printed. You can add other things:
@B The current (evaluated at the time the @B is seen) bps rate.
@D The current date, in MM/DD/YY.
@L The serial line to which getty is attached.
@S The system name.
@T The current time, in HH:MM:SS (24-hour).
@U The number of currently signed-on users. This is a
count of the number of entries in the /etc/utmp file
that have a non-null ut_name field.
@V The value of VERSION, as given in the defaults file.
To display a single '@' character, use either '\@' or '@@'.
When you are done editing /etc/gettydefs
, you can verify that
the syntax is correct by doing:
linux# getty -c /etc/gettydefs
Make sure there is no getty
or uugetty
config file for the
serial port that your terminal is attached to
(/etc/default/{uu}getty.ttyS
N or
/etc/conf.{uu}getty.ttyS
N), as this will probably
interfere with running getty
on a terminal. Remove the file if
it exits.
Edit your /etc/inittab
file to run getty
on the serial
port (substituting in the correct information for your environment -
port, speed, and default terminal type):
S1:23:respawn:/sbin/getty ttyS1 DT9600 vt100
Restart init
:
linux# init q
At this point, you should see a login prompt on your terminal. You may have to hit return to get the terminal's attention.
The "m" stands for modem. This program is primarily for modems and as of mid 1999 doesn't always work very well for text-terminals. It's poorly documented for terminals and you may need to wade thru much documentation for modems in order to figure out how to use it for terminals. Look at the last lines of /etc/mgetty/mgetty.config for an example of configuring it for a terminal. It will only support software (Xon/Xoff) flow control (used by many terminals) if you recompile it. This will be hopefully be fixed in the future. It would be nice to use the same getty for terminals as for modems but mgetty needs a little fixing to fill the bill.
There is both a "stty" command and a "setserial" command for
setting up the serial ports. Some (or all) of the needed stty
settings can be done via getty and there may be no need to use
setserial so you may not need to use either command. These two
commands (stty and setserial) set up different aspects of the serial
port. Stty does the most while setserial configures the low-level
stuff such as interrupts and port addresses. To "save" the settings,
these commands must be written in certain files (shell scripts) which
run each time the computer starts up. Distributions of Linux often
supply a shell script which runs setserial
but seldom supply one
which runs stty
since on seldom need it.
This part is in 3 HOWTOs: Modem, Serial, and Text-Terminal. There are some minor differences, depending on which HOWTO it appears in.
Don't ever use setserial
with Laptops (PCMCIA).
setserial
is a program which allows you to tell the device driver
software the I/O address of the serial port, which interrupt (IRQ) is
set in the port's hardware, what type of UART you have, etc. It can
also show how the driver is currently set. In addition, it can be
made to probe the hardware and try to determine the UART type and IRQ,
but this has severe limitations. See
Probing. Note that it can't set the IRQ, etc in the hardware
of PnP serial ports.
If you only have one or two built-in serial ports, they will usually
get set up correctly without using setserial. Otherwise (or if there
are problems with the serial port) you will likely need to deal with
setserial. Besides the man page for setserial
, check out info in
/usr/doc/setserial.../
or /usr/share/doc/setserial
.
It should tell you how setserial is handled in your distribution of
Linux.
Setserial
is often run automatically at boot-time by a start-up
shell-script for the purpose of assigning IRQs, etc. to the driver.
Setserial will only work if the serial module is loaded (or if the
equivalent was compiled into your kernel). If you should (for some
reason) unload the serial module later on, the changes previously made
by setserial
will be forgotten by the kernel. So setserial
must be run again to reestablish them. In addition to running via a
start-up script, something akin to setserial
also runs when the
serial module is loaded (or the like). Thus when you watch the
start-up messages on the screen it may look like it ran twice, and in
fact it has.
Setserial can set the time that the port will keep operating after it's closed (in order to output any characters still in its buffer in main RAM). This is needed at slow baud rates of 1200 or lower. It's also needed at higher speeds if there are a lot of "flow control" waits. See "closing_wait" in the man pg. If your serial port is Plug-and-Play you may need to consult other HOWTOs such as Plug-and-Play or Serial.
Setserial does not set either IRQ's nor I/O addresses in the serial port hardware itself. That is done either by jumpers or by plug-and-play. You must tell setserial the identical values that have been set in the hardware. Do not just invent some values that you think would be nice to use and then tell them to setserial. However, if you know the I/O address but don't know the IRQ you may command setserial to attempt to determine the IRQ.
You can see a list of possible commands by just typing setserial
with no arguments. This fails to show you the one-letter options such
as -v for verbose which you should normally use when troubleshooting.
Note that setserial calls an IO address a "port". If you type:
setserial -g /dev/ttyS*
you'll see some info about how that device driver is configured for
your ports. Add a -a to the option -g to see more info although few
people need to deal with (or understand) this additional info since
the default settings you see usually work fine. In normal cases the
hardware is set up the same way as "setserial" reports, but if you are
having problems there is a good chance that "setserial" has it wrong.
In fact, you can run "setserial" and assign a purely fictitious I/O
port address, any IRQ, and whatever uart type you would like to have.
Then the next time you type "setserial ..." it will display these
bogus values without complaint. Of course the serial port driver will
not work correctly (if at all) with such bogus values.
While assignments made by setserial are lost when the PC is powered off, a configuration file may restore them (or a previous configuration) when the PC is started up again. In newer versions, what you change by setserial gets automatically saved to a configuration file. In older versions, the configuration file only changes if you edit it manually so the configuration remains the same from boot to boot. See Configuration Scripts/Files
With appropriate options, setserial
can probe (at a given I/O
address) for a serial port but you must guess the I/O address. If you
ask it to probe for /dev/ttyS2 for example, it will only probe at the
address it thinks ttyS2 is at (2F8). If you tell setserial that ttyS2
is at a different address, then it will probe at that address, etc.
See
Probing
The purpose of this is to see if there is a uart there, and if so,
what its IRQ is. Use "setserial" mainly as a last resort as there are
faster ways to attempt it such as wvdialconf to detect modems, looking
at very early boot-time messages, or using pnpdump
--dumpregs
. To try to detect the physical hardware use the -v
(verbose) and autoconfig
command to setserial
. If the
resulting message shows a uart type such as 16550A, then you're OK.
If instead it shows "unknown
" for the uart type, then there is
supposedly no serial port at all at that I/O address. Some cheap
serial ports don't identify themselves correctly so if you see
"unknown
" you still might have a serial port there.
Besides auto-probing for a uart type, setserial can auto-probe for
IRQ's but this doesn't always work right either. In versions of
setserial >= 2.15, the results of your last probe test may be saved
and put into the configuration file /etc/serial.conf
which
will be used next time you start Linux. At boot-time when the serial
module loads (or the like), a probe for UARTs is made automatically
and reported on the screen. But the IRQs shown may be wrong. The
second report of the same is the result of a script which usually does
no probing and thus provides no reliable information as to how the
hardware is actually set. It only shows configuration date someone
wrote into the script or data that got saved in /etc/serial.conf.
It may be that two serial ports both have the same IO address set in
the hardware. Of course this is not permitted but it sometimes
happens anyway. Probing detects one serial port when actually there
are two. However if they have different IRQs, then the probe for IRQs
may show IRQ = 0. For me it only did this if I first used
setserial
to give the IRQ a ficticious value.
When the kernel loads the serial module (or if the "module
equivalent" is built into the kernel) then only ttyS{0-3}
are
auto-detected and the driver is set to use only IRQs 4 and 3
(regardless of what IRQs are actually set in the hardware). You see
this as a boot-time message just like as if setserial
had been
run. If you use 3 or more ports, this may result in IRQ conflicts.
To fix such conflicts by telling setserial the true IRQs (or for other
reasons) there may be a file somewhere that runs setserial
again.
This happens early at boot-time before any process uses the serial
port. In fact, your distribution may have set things up so that the
setserial program runs automatically from a start-up script at
boot-time. More info about how to handle this situation for your
particular distribution might be found in file named "setserial..."
or the like located in directory /usr/doc/ or /usr/share/doc/.
Your objective is to modify (or create) a script file in the /etc tree that runs setserial at boot-time. Most distributions provide such a file (but it may not initially reside in the /etc tree). In addition, setserial 2.15 and higher often have an /etc/serial.conf file that is used by the above script so that you don't need to directly edit the script that runs setserial. In addition just using setserial on the command line (2.15+) may ultimately alter this configuration file.
So prior to version 2.15 all you do is edit a script. After 2.15 you
may need to either do one of three things: 1. edit a script. 2. edit
/etc/serial.conf
or 3. run "setserial" on the command line
which will result in /etc/serial.conf
automatically being
edited. Which one of these you need to do depends on both your
particular distribution, and how you have set it up.
Prior to setserial 2.15 (1999) there was no /etc/serial.conf file to configure setserial. Thus you need to find the file that runs "setserial" at boot time and edit it. If it doesn't exist, you need to create one (or place the commands in a file that runs early at boot-time). If such a file is currently being used it's likely somewhere in the /etc directory-tree. But Redhat <6.0 has supplied it in /usr/doc/setserial/ but you need to move it to the /etc tree before using it. You might use "locate" to try to find such a file. For example, you could type: locate "*serial*".
The script /etc/rc.d/rc.serial
was commonly used in the past.
The Debian distribution used /etc/rc.boot/0setserial
.
Another file once used was /etc/rc.d/rc.local
but it's
not a good idea to use this since it may not be run early enough.
It's been reported that other processes may try to open the serial
port before rc.local runs resulting in serial communication failure.
If such a file is supplied, it should contain a number of
commented-out examples. By uncommenting some of these and/or
modifying them, you should be able to set things up correctly. Make
sure that you are using a valid path for setserial
, and a valid
device name. You could do a test by executing this file manually
(just type its name as the super-user) to see if it works right.
Testing like this is a lot faster than doing repeated reboots to get
it right. Of course you can also test a single setserial
command
by just typing it on the command line.
If you want setserial to automatically determine the uart and the IRQ for ttyS3 you would add something like:
/sbin/setserial /dev/ttyS3 auto_irq skip_test autoconfig
Do this for every serial port you want to auto configure. Be sure to
give a device name that really does exist on your machine. In some
cases this will not work right due to the hardware so if you know what
the uart and irq actually are, may want to assign them explicitly with
"setserial". For example:
/sbin/setserial /dev/ttyS3 irq 5 uart 16550A skip_test
For versions >= 2.15 (provided your distribution implemented the change, Redhat didn't) it may be more tricky to do since the file that runs setserial on startup, /etc/init.d/setserial or the like was not intended to be edited by the user. See New configuration method using /etc/serial.conf.
Prior to setserial version 2.15, the way to configure setserial
was to manually edit the shell-script that ran setserial at boot-time.
See
Edit a script (after version 2.15: perhaps not). Starting with version 2.15 (1999) of setserial
this shell-script is not edited but instead gets its data from a
configuration file: /etc/serial.conf
. Furthermore you may
not even need to edit serial.conf because using the "setserial"
command on the command line may automatically cause serial.conf to be
edited appropriately.
This was intended to make it so that you don't need to edit any file in order to set up (or change) setserial so it will do the right thing each time that Linux is booted. But there are serious pitfalls because it's not really "setserial" that edits serial.conf. Confusion is compounded because different distributions handle this differently. In addition, you may modify it so it works differently.
What often happens is this: When you shut down your PC the script
that runs "setserial" at boot-time is run again, but this time it only
does what the part for the "stop" case says to do: It uses
"setserial" to find out what the current state of "setserial" is and
puts that info into the serial.conf
file. Thus when you run
"setserial" to change the serial.conf file, it doesn't get changed
immediately but only when and if you shut down normally.
Now you can perhaps guess what problems might occur. Suppose you don't shut down normally (someone turns the power off, etc.) and the changes don't get saved. Suppose you experiment with "setserial" and forget to run it a final time to restore the original state (or make a mistake in restoring the original state). Then your "experimental" settings are saved.
If you manually edit serial.conf, then your editing is destroyed when you shut down because it gets changed back to the state of setserial at shutdown. There is a way to disable the changing of serial.conf at shutdown and that is to remove "###AUTOSAVE###" or the like from first line of serial.conf. In at least one distribution, the removal of "###AUTOSAVE###" from the first line is automatically done after the first time you shutdown just after installation. The serial.conf file will hopefully contain some comments to help you out.
The file most commonly used to run setserial at boot-time (in conformance with the configuration file) is now /etc/init.d/setserial (Debian) or /etc/init.d/serial (Redhat), or etc., but it should not normally be edited. For 2.15 Redhat 6.0 just had a file /usr/doc/setserial-2.15/rc.serial which you have to move to /etc/init.d/ if you want setserial to run at boot-time.
To disable a port, use setserial
to set it to
"uart none". The format of /etc/serial.conf appears to be just like
that of the parameters placed after "setserial" on the command line
with one line for each port. If you don't use autosave, you may edit
/etc/serial.conf manually.
BUG: As of July 1999 there is a bug/problem since with ###AUTOSAVE### only the setserial parameters displayed by "setserial -Gg /dev/ttyS*" get saved but the other parameters don't get saved. Use the -a flag to "setserial" to see all parameters. This will only affect a small minority of users since the defaults for the parameters not saved are usually OK for most situations. It's been reported as a bug and may be fixed by now.
In order to force the current settings set by setserial to be saved to
the configuration file (serial.conf) without shutting down, do what
normally happens when you shutdown: Run the shell-script
/etc/init.d/{set}serial stop
. The "stop" command will save
the current configuration but the serial ports still keep working OK.
In some cases you may wind up with both the old and new configuration methods installed but hopefully only one of them runs at boot-time. Debian labeled obsolete files with "...pre-2.15".
By default, both ttyS0 and ttyS2 share IRQ 4, while ttyS0 and ttyS3 share IRQ 3. But sharing serial interrupts is not permitted unless you: 1. have kernel 2.2 or better, and 2. you've complied in support for this, and 3. your serial hardware supports it. See Serial-HOWTO: Interrupt sharing and Kernels 2.2+.
If you only have two serial ports, ttyS0 and ttyS1, you're still OK since IRQ sharing conflicts don't exist for non-existent devices.
If you add an internal modem and retain ttyS0 and ttyS1, then you should attempt to find an unused IRQ and set it both on your serial port (or modem card) and then use setserial to assign it to your device driver. If IRQ 5 is not being used for a sound card, this may be one you can use for a modem. To set the IRQ in hardware you may need to use isapnp, a PnP BIOS, or patch Linux to make it PnP. To help you determine which spare IRQ's you might have, type "man setserial" and search for say: "IRQ 11".
stty
does much of the configuration of the serial port but
since application programs (and the getty program) often handle it,
you may not need to use it much. It's handy if your having problems
or want to see how the port is set up. Try typing ``stty -a'' at your
terminal/console to see how it's now set. Also try typing it without
the -a (all) for a short listing which shows how it's set different
than normal. Don't try to learn all the setting unless you want to
become a serial guru. Most of the defaults should work OK and some of
the settings are needed only for certain obsolete dumb terminals made
in the 1970's.
Whereas setserial
only deals with actual serial ports, stty is
used both for serial ports and for virtual terminals such as the standard
Linux text interface at a PC monitor. For the PC monitor, many of the
stty settings are meaningless. Changing the baud rate, etc. doesn't
appear to actually do anything.
Here are some of the items stty configures: speed (bits/sec), parity,
bits/byte, # of stop bits, strip 8th bit?, modem control signals, flow
control, break signal, end-of-line markers, change case, padding, beep
if buffer overrun?, echo what you type to the screen, allow background
tasks to write to terminal?, define special (control) characters (such
as what key to press for interrupt). See the stty
man or info
page for more details. Also see the man page: termios
which
covers the same options set by stty but (as of mid 1999) covers
features which the stty man page fails to mention.
With some implementations of getty (getty_ps package), the commands that one would normally give to stty are typed into a getty configuration file: /etc/gettydefs. Even without this configuration file, the getty command line may be sufficient to set things up so that you don't need stty."')
One may write C programs which change the stty configuration, etc. Looking at some of the documentation for this may help one better understand the use of the stty command (and its many possible arguments). Serial-Programming-HOWTO is useful. The manual page: termios contains a description of the C-language structure (of type termios) which stores the stty configuration in computer memory. Many of the flag names in this C-structure are almost the same (and do the same thing) as the arguments to the stty command.
Using stty
to inspect or configure the terminal that you are
currently using is easy. Doing it for a different (foreign) terminal
or serial port may be tricky. For example, let's say you are at the
PC monitor (tty1) and want to use stty
to deal with the serial
port ttyS2. Prior to about 2000 you needed to use the redirection
operator "<". After 2000 (provided your version of setserial is >=
1.17 and stty >= 2.0) there is an alternate method using the -F
option. This will work when the old redirection method fails. Even
with the latest versions be warned that if there is a terminal on
ttyS2 and a shell is running on that terminal, then what you see will
likely be deceptive and trying to set it will not work. See
Two Interfaces at a Terminal to
understand it.
The new method is ``stty -F /dev/ttyS2 ...'' (or --file instead of F). If ... is -a it displays all the stty settings. The old redirection method (which still works in later versions) is to type ``stty ... </dev/ttyS2''. If the new method works but the old one hangs, it implies that the port is hung due to lack of a modem control line from being asserted. Thus the old method is still useful for troubleshooting. See the following subsection.
Here's a problem with the old redirection operator (which doesn't happen if you use the newer -F option instead). Sometimes when trying to use stty, the command hangs and nothing happens (you don't get a prompt for a next command even after hitting <return>). This is likely due to the port being stuck because it's waiting for one of the modem control lines to be asserted. For example, unless you've set "clocal" to ignore modem control lines, then if no CD signal is asserted the port will not open and stty will not work for it (unless you use the newer -F option). A similar situation seems to exist for hardware flow control. If the cable for the port doesn't even have a conductor for the pin that needs to be asserted then there is no easy way to stop the hang.
One way to try to get out of the above hang is to use the newer -F option and set "clocal" and/or "crtscts". If you don't have the -F option then you may try to run program on the port that will force it to operate even if the control lines say not to. Then hopefully this program might set the port so it doesn't need the control signal in the future in order to open: clocal or -crtscts. To use "minicom" to do this you have to reconfigure minicom for another ttyS, etc, and then exit it and restart it. Since you then have to reconfigure minicom again, it may be simpler to just reboot the PC.
The old redirection method makes ttyS2 the standard input to stty. This gives the stty program a link to the "file" ttyS2 so that it may "read" it. But instead of reading the bytes sent to ttyS2 as one might expect, it uses the link to find the configuration settings of the port so that it may read or change them. Some people tried to use ``stty ... > /dev/ttyS2'' to set the terminal. This will not do it. Instead, it takes the message normal displayed by the stty command for the terminal you are on (say tty1) and sends this message to ttyS2. But it doesn't change any settings for ttyS2.
When using a shell (such as bash) with command-line-editing enabled there are two different terminal interfaces (what you see when you type stty -a). When you type at the command line you have a temporary "raw" interface (or raw mode) where each character is read by the command-line-editor as you type it. Once you hit the <return> key, the command-line-editor is exited and the terminal interface is changed to the nominal "cooked" interface (cooked mode) for the terminal. This cooked mode lasts until the next prompt is sent to the terminal. Note that one never types anything to this cooked mode but what was typed in raw mode becomes cooked mode as soon as one hits the <return> key.
When a prompt is sent to the terminal the terminal goes from "cooked" to "raw" mode (just like it does when you start an editor since you are starting the command-line editor). The settings for the "raw" mode are based only on the basic settings taken from the "cooked" mode. Raw mode keeps these setting but changes several other settings in order to change the mode to "raw". It is not at all based on the settings used in the previous "raw" mode. Thus if one uses stty to change settings for the raw mode, such settings will be lost as soon as one hits the <return> key at the terminal that has supposedly been "set".
Now when one types stty to look at the terminal interface, one may either get a view of the cooked mode or the raw mode. You need to figure out which one you're looking at. It you use stty from another terminal to deal with a terminal that is displaying a command line, then the view is that of the raw mode. Any changes made will only be made to the raw mode and will be lost when someone presses <return> at the terminal you tried to "set". But if you type a stty command at your terminal (without using < for redirection) and then hit <return> it's a different story. The <return> puts the terminal in cooked mode. Your changes are saved and will still be there when the terminal goes back into raw mode (unless of course it's a setting not allowed in raw mode).
This situation can create problems. For example, suppose you corrupt your terminal interface and to restore it you go to another terminal and "stty -F dev/ttyS1 sane" (or the like) to restore it. It will not work! Of course you can try to type "stty sane ..." at the terminal that is corrupted but you can't see what you typed. All the above not only applies to dumb terminals but to virtual terminals used on a PC Monitor as well as to the terminal windows in X. In other words, it applies to almost everyone who uses Linux. Luckily, a file that runs stty at boot-time will likely deal with a terminal (or serial port with no terminal) that has no shell running on it so there's no problem.
Should you need to have stty
set up the serial interface each
time the computer starts up then you need to put the stty
command
in a file that will be executed each time the computer is started up
(Linux boots). It should be run before the serial port is used
(including running getty on the port). There are many possible places
to put it. If it gets put in more than one place and you only know
about (or remember) one of those places, then a conflict is likely.
So make sure to document what you do.
One place to put it would be in the same file that runs setserial when the system is booted. The location is distribution and version dependent. It would seem best to put it after the setserial command so that the low level stuff is done first. If you have directories in the /etc tree where every file in them is executed at boot-time (System V Init) then you could create a file named "stty" for this purpose.
See Terminfo and Termcap (detailed) for a more detailed discussion of termcap. Many application programs that you run use the terminfo (formerly termcap) data base. This has an entry (or file) for each model or type (such as vt100) of terminal and tells what the terminal can do, what codes to send for various actions, and what codes to send to the terminal to initialize it.
Since many terminals (and PC's also) can emulate other terminals and have various "modes" of operation, there may be several terminfo entries from which to choose for a given physical terminal. They usually will have similar names. The last parameter of getty (for both agetty and getty_ps) should be the terminfo name of the terminal (or terminal emulation) that you are using (such as vt100).
The terminfo does more than just specify what the terminal is capable of doing and disclose what codes to send to the terminal to get it to do those things. It also specifies what "bold" will look like (will it be reverse video or will it be high intensity, etc.), what the cursor will look like, if the letters will be black, white, or some other color, etc. In PC terminology these are called "preferences". It also specifies initialization codes to send to the terminal (analogous to the init strings sent to modems). Such strings are not automatically sent to the terminal by Linux. See Init String. If you don't like the way the display on the screen looks and behaves you may need to edit (and then update) the terminfo (or termcap) file. See Terminfo Compiler (tic) for how to update.
These are two environment variables for terminals: TERM and TERMINFO, but you may not need to do anything about them. TERM must always be set to the type of the terminal you are using (such as vt100). If you don't know the type (name) see What is the terminfo name of my terminal ?. TERMINFO contains the path to the terminfo data base, but may not be needed if the database is in a default location (or TERMINFO could be set automatically by a file that comes with your distribution of Linux). You may want to look at Compiled database locations.
Fortunately, the getty program usually sets TERM for you just before login. It just uses the terminal type that was specified on getty's command line (in /etc/inittab). This permits application programs to find the name of your terminal and then look up the terminal capabilities in the terminfo data base. See TERM Variable for more details on TERM.
If your terminfo data base can't be found you may see an error message about it on your terminal. If this happens it's time to check out where terminfo resides and set TERMINFO if needed. You may find out where the terminfo database is by searching for a common terminfo file such as "vt100" using the "locate" command. Make sure that your terminal is in this database. An example of setting TERMINFO is: export TERMINFO=/usr/share/terminfo (put this in /etc/profile or the like). If the data for your terminal in this data base is not to your liking, you may need to edit it. See Terminfo & Termcap (brief).
You need the exact name in order to set the TERM environment
variable or to give to getty
. The same name should be used by
both the termcap and terminfo databases so you only need to find it
once. A terminal usually has alias names but if more than one name is
shown, use the first one.
To find it, try looking at the /etc/termcap... file (if you have it). If not, then either look at the terminfo trees (see Compiled database locations) or try to find the terminfo source code file (see Source-code database locations.
The configuration file /etc/ttytype is used to map /dev/ttySn's to terminal names per terminfo. tset uses it, but if the TERM environment variable is already set correctly, then this file is not needed. Since the Linux getty sets TERM for each tty, you don't need this file. In other Unix-like systems such as FreeBSD, the file /etc/ttys maps ttys to much more, such as the appropriate getty command, and the category of connection (such as "dialup"). An example line of Linux ttytype: vt220 ttyS1
By default, the root user may not login from a terminal. To permit this you must create (or edit) the file /etc/securetty per the manual page "securetty". But use of this may be be distribution specific as the Suse distribution doesn't use /etc/securetty. To restrict logins of certain users and/or certain terminals, etc. edit /etc/login.access (this replaces the old /etc/usertty file ??). /etc/login.def determines if /etc/securetty is to be used and could be edited so as to make /etc/securetty not needed (or not used). /etc/porttime restricts the times at which certain ttys and users may use the computer. If there are too many failed login attempt by a user, that user may be prohibited from ever logging in again. See the man page "faillog" for how to control this.
Sometimes there are commands that one wants to execute at start-up only for a certain type of terminal. To do this for the stty command is no problem since one uses the redirection operator < to specify which terminal the command is for. But what about shell aliases or functions? You may want to make a function for the ls command so it will color-code the listing of directories only on color terminals or consoles. For monochrome terminals you want the same function name (but a different function body) which will use symbols as a substitute for color-coding. Where to put such function definitions that are to be different for different terminals?
You may put them inside an "if" statement in /etc/profile which runs at startup each time one logs on. The conditional "if" statement defines certain functions, etc. only if the terminal is of a specified type.
While much of what this if statement does could be done in the configuration file for dircolors, here's an example for the case of the bash shell:
if [ "$TERM" = linux ]; then eval `dircolors`; elif [ "$TERM" = vt220 ]; then ls () { command ls -F $* ; }# to export the function ls(): declare -xf ls else echo "From /etc/profile: Unknown terminal type $TERM" fi