Next Previous Contents

3. Summary of Linux and Unix Security Features

Discretion will protect you, and understanding will guard you. Proverbs 2:11 (NIV)

Before discussing guidelines on how to use Linux or Unix security features, it's useful to know what those features are from a programmer's viewpoint. This section briefly describes those features that are widely available on nearly all Unix-like systems. However, note that there is considerable variation between different versions of Unix-like systems, and not all systems have the abilities described here. This chapter also notes some extensions or features specific to Linux; Linux distributions tend to be fairly similar to each other from the point-of-view of programming for security, because they all use essentially the same kernel and C library (and the GPL-based licenses encourage rapid dissemination of any innovations). This chapter doesn't discuss issues such as implementations of mandatory access control (MAC) which many Unix-like systems do not implement. If you already know what those features are, please feel free to skip this section.

Many programming guides skim briefly over the security-relevant portions of Linux or Unix and skip important information. In particular, they often discuss ``how to use'' something in general terms but gloss over the security attributes that affect their use. Conversely, there's a great deal of detailed information in the manual pages about individual functions, but the manual pages sometimes obscure key security issues with detailed discussions on how to use each individual function. This section tries to bridge that gap; it gives an overview of the security mechanisms in Linux that are likely to be used by a programmer, but concentrating specifically on the security ramifications. This section has more depth than the typical programming guides, focusing specifically on security-related matters, and points to references where you can get more details.

First, the basics. Linux and Unix are fundamentally divided into two parts: the kernel and ``user space''. Most programs execute in user space (on top of the kernel). Linux supports the concept of ``kernel modules'', which is simply the ability to dynamically load code into the kernel, but note that it still has this fundamental division. Some other systems (such as the HURD) are ``microkernel'' based systems; they have a small kernel with more limited functionality, and a set of ``user'' programs that implement the lower-level functions traditionally implemented by the kernel.

Some Unix-like systems have been extensively modified to support strong security, in particular to support U.S. Department of Defense requirements for Mandatory Access Control (level B1 or higher). This version of this paper doesn't cover these systems or issues; I hope to expand to that in a future version.

When users log in, their usernames are mapped to integers marking their ``UID'' (for ``user id'') and the ``GID''s (for ``group id'') that they are a member of. UID 0 is a special privileged user (role) traditionally called ``root''; on most Unix-like systems (including Unix) root can overrule most security checks and is used to administrate the system. Processes are the only ``subjects'' in terms of security (that is, only processes are active objects). Processes can access various data objects, in particular filesystem objects (FSOs), System V Interprocess Communication (IPC) objects, and network ports. Processes can also set signals. Other security-relevant topics include quotas and limits, libraries, auditing, and PAM. The next few subsections detail this.

3.1 Processes

In Unix-like systems, user-level activities are implemented by running processes. Most Unix systems support a ``thread'' as a separate concept; threads share memory inside a process, and the system scheduler actually schedules threads. Linux does this differently (and in my opinion uses a better approach): there is no essential difference between a thread and a process. Instead, in Linux, when a process creates another process it can choose what resources are shared (e.g., memory can be shared). The Linux kernel then performs optimizations to get thread-level speeds; see clone(2) for more information. When programming, it's usually better to use one of the standard thread libraries that hide these differences.

Process Attributes

Here are typical attributes associated with each process in a Unix-like system:

Here are less-common attributes associated with processes:

In Linux, if you really need to know exactly what attributes are associated with each process, the most definitive source is the Linux source code, in particular /usr/include/linux/sched.h's definition of task_struct.

The portable way to create new processes it use the fork(2) call. BSD introduced a variant called vfork(2) as an optimization technique. The bottom line with vfork(2) is simple: don't use it if you can avoid it. In vfork(2), unlike fork(2), the child borrows the parent's memory and thread of control until a call to execve(2V) or an exit occurs; the parent process is suspended while the child is using its resources. The rationale is that in old BSD systems, fork(2) would actually cause memory to be copied while vfork(2) would not. Linux never had this problem; because Linux used copy-on-write semantics internally, Linux only copies pages when they changed (actually, there are still some tables that have to be copied; in most circumstances their overhead is not significant). Nevertheless, since some programs depend on vfork(2), recently Linux implemented the BSD vfork(2) semantics (previously it had been an alias for fork(2)). The problem with vfork(2) is that it's actually fairly tricky for a process to not interfere with its parent, especially in high-level languages. The result: programs using vfork(2) can easily fail when code changes or even when compiler versions change. Avoid vfork(2) in most cases; its primary use is to support old programs that needed vfork's semantics.

Linux supports the Linux-unique clone(2) call. This call works like fork(2), but allows specification of which resources should be shared (e.g., memory, file descriptors, etc.). Portable programs shouldn't use this call directly; as noted earlier, they should instead rely on threading libraries that use the call to implement threads.

This document is not a full tutorial on writing programs, so I will skip widely-available information handling processes. You can see the documentation for wait(2), exit(2), and so on for more information.

POSIX Capabilities

POSIX capabilities are sets of bits that permit splitting of the privileges typically held by root into a larger set of more specific privileges. POSIX capabilities are defined by a draft IEEE standard; they're not unique to Linux but they're not universally supported by other Unix-like systems either. Linux kernel 2.0 did not support POSIX capabilities, while version 2.2 added support for POSIX capabilities to processes. When Linux documentation (including this one) says ``requires root privilege'', in nearly all cases it really means ``requires a capability'' as documented in the capability documentation. If you need to know the specific capability required, look it up in the capability documentation.

In Linux, the eventual intent is to permit capabilities to be attached to files in the filesystem; as of this writing, however, this is not yet supported. There is support for transferring capabilities, but this is disabled by default. Linux version 2.2.11 added a feature that makes capabilities more directly useful, called the ``capability bounding set''. The capability bounding set is a list of capabilities that are allowed to be held by any process on the system (otherwise, only the special init process can hold it). If a capability does not appear in the bounding set, it may not be exercised by any process, no matter how privileged. This feature can be used to, for example, disable kernel module loading. A sample tool that takes advantage of this is LCAP at http://pweb.netcom.com/~spoon/lcap/.

More information about POSIX capabilities is available at ftp://linux.kernel.org/pub/linux/libs/security/linux-privs.

Process Creation and Manipulation

Processes may be created using fork(2), the non-recommended vfork(2), or the Linux-unique clone(2); all of these system calls duplicate the existing process, creating two processes out of it. A process can execute a different program by calling execve(2), or various front-ends to it (for example, see exec(3), system(3), and popen(3)).

When a program is executed, and its file has its setuid or setgid bit set, the process' EUID or EGID (respectively) is set to the file's value. Note that under Linux this does not occur with ordinary scripts such as shell scripts, because there are a number of security dangers when trying to do this with scripts. Some other Unix-like systems do support setuid shell scripts, but since they're a security problem they're best avoided in new applications. As a special case, Perl includes a special setup to support setuid Perl scripts; if you truly need to support this, examine how Perl does this.

In some cases a process can affect the various UID and GID values; see setuid(2), seteuid(2), setreuid(2), and the Linux-unique setfsuid(2). In particular the saved user id (SUID) attribute is there to permit trusted programs to temporarily switch UIDs. Unix-like systems supporting the SUID use the following rules: If the RUID is changed, or the EUID is set to a value not equal to the RUID, the SUID is set to the new EUID. Unprivileged users can set their EUID from their SUID, the RUID to the EUID, and the EUID to the RUID.

The Linux-unique FSUID process attribute is intended to permit programs like the NFS server to limit themselves to only the filesystem rights of some given UID without giving that UID permission to send signals to the process. Whenever the EUID is changed, the FSUID is changed to the new EUID value; the FSUID value can be set separately using setfsuid(2), a Linux-unique call. Note that non-root callers can only set FSUID to the current RUID, EUID, SEUID, or current FSUID values.

3.2 Files

On all Unix-like systems, the primary repository of information is the file tree, rooted at ``/''. The file tree is a hierarchical set of directories, each of which may contain filesystem objects (FSOs).

In Linux, filesystem objects (FSOs) may be ordinary files, directories, symbolic links, named pipes (also called first-in first-outs or FIFOs), sockets (see below), character special (device) files, or block special (device) files (in Linux, this list is given in the find(1) command). Other Unix-like systems have an identical or similar list of FSO types.

Filesystem objects are collected on filesystems, which can be mounted and unmounted on directories in the file tree. A filesystem type (e.g., ext2 and FAT) is a specific set of conventions for arranging data on the disk to optimize speed, reliability, and so on; many people use the term ``filesystem'' as a synonym for the filesystem type.

Filesystem Object Attributes

Different Unix-like systems support different filesystem types. Filesystems may have slightly different sets of access control attributes and access controls can be affected by options selected at mount time. On Linux, the ext2 filesystems is currently the most popular filesystem, but Linux supports a vast number of filesystems. Most Unix-like systems tend to support multiple filesystems too.

Most filesystems on Unix-like systems store at least the following:

The following are attributes are Linux-unique extensions on the ext2 filesystem, though many other filesystems have similar functionality:

Other common extensions include some sort of bit indicating ``cannot delete this file''.

Many of these values can be influenced at mount time, so that, for example, certain bits can be treated as though they had a certain value (regardless of their values on the media). See mount(1) for more information about this. Some filesystems don't support some of these access control values; again, see mount(1) for how these filesystems are handled. In particular, many Unix-like systems support MS-DOS disks, which by default support very few of these attributes (and there's not standard way to define these attributes). In that case, Unix-like systems emulate the standard attributes (possibly implementing them through special on-disk files), and these attributes are generally influenced by the mount(1) command.

It's important to note that, for adding and removing files, only the directory ACLs (and file owner) really matter unless the Unix-like system supports more complex schemes (such as POSIX ACLs). Unless the system has special extensions (stock Linux doesn't), a file that has no permissions granted can still be removed if its containing directory permits it. Also, if an ancestor directory permits its children to be changed by some user or group, then any of that directory's descendents can be replaced by that user or group.

The draft IEEE POSIX standard on security defines a technique for true ACLs that support a list of users and groups with their permissions. Unfortunately, this is not widely supported nor supported exactly the same way across Unix-like systems. Stock Linux 2.2, for example, has neither ACLs nor POSIX capability values in the filesystem.

It's worth noting that in Linux, the Linux ext2 filesystem by default reserves a small amount of space for the root user. This is a partial defense against denial-of-service attacks; even if a user fills a disk that is shared with the root user, the root user has a little space left over (e.g., for critical functions). The default is 5% of the filesystem space; see mke2fs(8), in particular its ``-m'' option.

Creation Time Initial Values

At creation time, the following rules apply. On most Unix systems, when a new filesystem object is created via creat(2) or open(2), the FSO UID is set to the process' EUID and the FSO's GID is set to the process' EGID. Linux works slightly differently due to its FSUID and setgid directory extensions; the FSO's UID is set to the process' FSUID, and the FSO GID is set to the process' FSGUID; if the containing directory's setgid bit is set or the filesystem's ``GRPID'' flag is set, the FSO GID is actually set to the GID of the containing directory. This special case supports ``project'' directories: to make a ``project'' directory, create a special group for the project, create a directory for the project owned by that group, then make the directory setgid: files placed there are automatically owned by the project. Similarly, if a new subdirectory is created inside a directory with the setgid bit set (and the filesystem GRPID isn't set), the new subdirectory will also have its setgid bit set (so that project subdirectories will ``do the right thing''.); in all other cases the setgid is clear for a new file. FSO basic access control values (read, write, execute) are computed from (requested values & ~ umask of process). New files always start with a clear sticky bit and clear setuid bit.

Changing Access Control Attributes

You can set most of these values with chmod(2) or chmod(1), but see also chown(1), and chgrp(1). In Linux, some the Linux-unique attributes are manipulated using chattr(1).

Note that in Linux, only root can change the owner of a given file. Some Unix-like systems allow ordinary users to transfer ownership of their files to another, but this causes complications and is forbidden by Linux. For example, if you're trying to limit disk usage, allowing such operations would allow users to claim that large files actually belonged to some other ``victim''.

Using Access Control Attributes

Under Linux and most Unix-like systems, reading and writing attribute values are only checked when the file is opened; they are not re-checked on every read or write. Still, a large number of calls do check these attributes, since the filesystem is so central to Unix-like systems. Calls that check these attributes include open(2), creat(2), link(2), unlink(2), rename(2), mknod(2), symlink(2), and socket(2).

Filesystem Hierarchy

Over the years conventions have been built on ``what files to place where''. Where possible, please follow conventional use when placing information in the hierarchy. For example, place global configuration information in /etc. The Filesystem Hierarchy Standard (FHS) tries to define these conventions in a logical manner, and is widely used by Linux systems. The FHS is an update to the previous Linux Filesystem Structure standard (FSSTND), incorporating lessons learned and approaches from Linux, BSD, and System V systems. See http://www.pathname.com/fhs for more information about the FHS. A summary of these conventions is in hier(5) for Linux and hier(7) for Solaris. Sometimes different conventions disagree; where possible, make these situations configurable at compile or installation time.

3.3 System V IPC

Many Unix-like systems, including Linux and System V systems, support System V interprocess communication (IPC) objects. Indeed System V IPC is required by the Open Group's Single UNIX Specification, Version 2 [Open Group 1997]. System V IPC objects can be one of three kinds: System V message queues, semaphore sets, and shared memory segments. Each such object has the following attributes:

When accessing such objects, the rules are as follows:

Note that root, or a process with the EUID of either the owner or creator, can set the owning UID and owning GID and/or remove the object. More information is available in ipc(5).

3.4 Sockets and Network Connections

Sockets are used for communication, particularly over a network. Sockets were originally developed by the BSD branch of Unix systems, but they are generally portable to other Unix-like systems: Linux and System V variants support sockets as well, and socket support is required by the Open Group's Single Unix Specification [Open Group 1997]. System V systems traditionally used a different (incompatible) network communication interface, but it's worth noting that systems like Solaris include support for sockets. Socket(2) creates an endpoint for communication and returns a descriptor, in a manner similar to open(2) for files. The parameters for socket specify the protocol family and type, such as the Internet domain (TCP/IP version 4), Novell's IPX, or the ``Unix domain''. A server then typically calls bind(2), listen(2), and accept(2) or select(2). A client typically calls bind(2) (though that may be omitted) and connect(2). See these routine's respective man pages for more information.

The ``Unix domain sockets'' don't actually represent a network protocol; they can only connect to sockets on the same machine. (at the time of this writing for the standard Linux kernel). When used as a stream, they are fairly similar to named pipes, but with significant advantages. In particular, Unix domain socket is connection-oriented; each new connection to the socket results in a new communication channel, a very different situation than with named pipes. Because of this property, Unix domain sockets are often used instead of named pipes to implement IPC for many important services. Just like you can have unnamed pipes, you can have unnamed Unix domain sockets using socketpair(2); unnamed Unix domain sockets are useful for IPC in a way similar to unnamed pipes.

There are several interesting security implications of Unix domain sockets. First, although Unix domain sockets can appear in the filesystem and can have stat(2) applied to them, you can't use open(2) to open them (you have to use the socket(2) and friends interface). Second, Unix domain sockets can be used to pass file descriptors between processes (not just the file's contents). This odd capability, not available in any other IPC mechanism, has been used to hack all sorts of schemes (the descriptors can basically be used as a limited version of the ``capability'' in the computer science sense of the term). File descriptors are sent using sendmsg(2), where the msg (message)'s field msg_control points to an array of control message headers (field msg_controllen must specify the number of bytes contained in the array). Each control message is a struct cmsghdr followed by data, and for this purpose you want the cmsg_type set to SCM_RIGHTS. A file descriptor is retrieved through recvmsg(2) and then tracked down in the analogous way. Frankly, this feature is quite baroque, but it's worth knowing about.

Standard Unix convention is that binding to TCP and UDP local port numbers less than 1024 requires root privilege, while any process can bind to an unbound port number of 1024 or greater. Linux follows this convention, more specifically, Linux requires a process to have the capability CAP_NET_BIND_SERVICE to bind to a port number less than 1024; this capability is normally only held by processes with an euid of 0. The adventurous can check this in Linux by examining its Linux's source; in Linux 2.2.12, it's file /usr/src/linux/net/ipv4/af_inet.c, function inet_bind().

3.5 Signals

Signals are a simple form of ``interruption'' in the Unix-like OS world, and are an ancient part of Unix. A process can set a ``signal'' on another process (say using kill(1) or kill(2)), and that other process would receive and handle the signal asynchronously. For a process to have permission to send a signal to some other process, the sending process must either have root privileges, or the real or effective user ID of the sending process must equal the real or saved set-user-ID of the receiving process.

Although signals are an ancient part of Unix, they've had different semantics in different implementations. Basically, they involve questions such as ``what happens when a signal occurs while handling another signal''? The older Linux libc 5 used a different set of semantics for some signal operations than the newer GNU libc libraries. For more information, see the glibc FAQ (on some systems a local copy is available at /usr/doc/glibc-*/FAQ).

For new programs, just use the POSIX signal system (which in turn was based on BSD work); this set is widely supported and doesn't have the problems that some of the older signal systems did. The POSIX signal system is based on using the sigset_t datatype, which can be manipulated through a set of operations: sigemptyset(), sigfillset(), sigaddset(), sigdelset(), and sigismember(). You can read about these in sigsetops(3). Then use sigaction(2), sigaction(2), sigprocmask(2), sigpending(2), and sigsuspend(2) to set up an manipulate signal handling (see their man pages for more information).

In general, make any signal handlers very short and simple, and look carefully for race conditions. Signals, since they are by nature asynchronous, can easily cause race conditions.

A common convention exists for servers: if you receive SIGHUP, you should close any log files, reopen and reread configuration files, and then re-open the log files. This supports reconfiguration without halting the server and log rotation without data loss. If you are writing a server where this convention makes sense, please support it.

3.6 Quotas and Limits

Many Unix-like systems have mechanisms to support filesystem quotas and process resource limits. This certainly includes Linux. These mechanisms are particularly useful for preventing denial of service attacks; by limiting the resources available to each user, you can make it hard for a single user to use up all the system resources. Be careful with terminology here, because both filesystem quotas and process resource limits have ``hard'' and ``soft'' limits but the terms mean slightly different things.

You can define storage (filesystem) quota limits on each mountpoint for the number of blocks of storage and/or the number of unique files (inodes) that can be used, and you can set such limits for a given user or a given group. A ``hard'' quota limit is a never-to-exceed limit, while a ``soft'' quota can be temporarily exceeded. See quota(1), quotactl(2), and quotaon(8).

The rlimit mechanism supports a large number of process quotas, such as file size, number of child processes, number of open files, and so on. There is a ``soft'' limit (also called the current limit) and a ``hard limit'' (also called the upper limit). The soft limit cannot be exceeded at any time, but through calls it can be raised up to the value of the hard limit. See getrlimit(), setrlimit(), and getrusage(). Note that there are several ways to set these limits, including the PAM module pam_limits.

3.7 Dynamically Linked Libraries

Practically all programs depend on libraries to execute. In most modern Unix-like systems, including Linux, programs are by default compiled to use dynamically linked libraries (DLLs). That way, you can update a library and all the programs using that library will use the new (hopefully improved) version if they can.

Dynamically linked libraries are typically placed in one a few special directories. The usual directories include /lib, /usr/lib, /lib/security for PAM modules, /usr/X11R6/lib for X-windows, and /usr/local/lib.

There are special conventions for naming libraries and having symbolic links for them, with the result that you can update libraries and still support programs that want to use old, non-backward-compatible versions of those libraries. There are also ways to override specific libraries or even just specific functions in a library when executing a particular program. This is a real advantage of Unix-like systems over Windows-like systems; I believe Unix-like systems have a much better system for handling library updates, one reason that Unix and Linux systems are reputed to be more stable than Windows-based systems.

On GNU glibc-based systems, including all Linux systems, the list of directories automatically searched during program start-up is stored in the file /etc/ld.so.conf. Many Red Hat-derived distributions don't normally include /usr/local/lib in the file /etc/ld.so.conf. I consider this a bug, and adding /usr/local/lib to /etc/ld.so.conf is a common ``fix'' required to run many programs on Red Hat-derived systems. If you want to just override a few functions in a library, but keep the rest of the library, you can enter the names of overriding libraries (.o files) in /etc/ld.so.preload; these ``preloading'' libraries will take precedence over the standard set. This preloading file is typically used for emergency patches; a distribution usually won't include such a file when delivered. Searching all of these directories at program start-up would be too time-consuming, so a caching arrangement is actually used. The program ldconfig(8) by default reads in the file /etc/ld.so.conf, sets up the appropriate symbolic links in the dynamic link directories (so they'll follow the standard conventions), and then writes a cache to /etc/ld.so.cache that's then used by other programs. So, ldconfig has to be run whenever a DLL is added, when a DLL is removed, or when the set of DLL directories changes; running ldconfig is often one of the steps performed by package managers when installing a library. On start-up, then, a program uses the dynamic loader to read the file /etc/ld.so.cache and then load the libraries it needs.

Various environment variables can control this process, and in fact there are environment variables that permit you to override this process (so, for example, you can temporarily substitute a different library for this particular execution). In Linux, the environment variable LD_LIBRARY_PATH is a colon-separated set of directories where libraries should be searched for first, before the standard set of directories; this is useful when debugging a new library or using a nonstandard library for special purposes. The variable LD_PRELOAD lists object files with functions that override the standard set, just as /etc/ld.so.preload does.

Permitting user control over dynamically linked libraries would be disastrous for setuid/setgid programs if special measures weren't taken. Therefore, in the GNU glibc implementation, if the program is setuid or setgid these variables (and other similar variables) are ignored or greatly limited in what they can do. The GNU glibc library determines if a program is setuid or setgid by checking the program's credentials; if the uid and euid differ, or the gid and the egid differ, the library presumes the program is setuid/setgid (or descended from one) and therefore greatly limits its abilities to control linking. If you load the GNU glibc libraries, you can see this; see especially the files elf/rtld.c and sysdeps/generic/dl-sysdep.c. This means that if you cause the uid and gid to equal the euid and egid, and then call a program, these variables will have full effect. Other Unix-like systems handle the situation differently but for the same reason: a setuid/setgid program should not be unduly affected by the environment variables set.

3.8 Audit

Different Unix-like systems handle auditing differently. In Linux, the most common ``audit'' mechanism is syslogd(8), usually working in conjuction with klogd(8). You might also want to look at wtmp(5), utmp(5), lastlog(8), and acct(2). Some server programs (such as the Apache web server) also have their own audit trail mechanisms. According to the FHS, audit logs should be stored in /var/log or its subdirectories.

3.9 PAM

Sun Solaris and nearly all Linux systems use the Pluggable Authentication Modules (PAM) system for authentication. PAM permits run-time configuration of authentication methods (e.g., use of passwords, smart cards, etc.). PAM will be discussed more fully later in this document.


Next Previous Contents