Oversimplified, Plug-and-Play automatically tells the software (device drivers) where to find various pieces of hardware (devices) such as modems, network cards, sound cards, etc. Plug-and-Play's task is to match up physical devices with the software (device drivers) that operates them and to establish channels of communication between each device and its driver. In order to achieve this, PnP allocates the following "bus-resources" to both drivers and hardware: I/O addresses, IRQs, DMA channels (ISA bus only), and memory regions. If you don't understand what these 4 bus-resources are, read the following subsections of this HOWTO: I/O Addresses, IRQs, DMA Channels, Memory Regions. An article in Linux Gazette about 3 of these bus-resources is Introduction to IRQs, DMAs and Base Addresses. Once these bus-resources have been assigned (and if the correct driver is installed), the names for such devices in the /dev directory are ready to use.
This PnP assignment of bus-resources is sometimes called "configuring" but it is only a low level type of configuring. Even with PnP fully utilized, much configuring of devices is done by other than PnP. For example, for modem configuration an "init string" is sent to the modem over the I/0 address "channel". This "init string" has nothing to do with PnP although the "channel" used to send it to the modem was allocated by PnP. Setting the speed (and many other parameters) of a serial port is done by sending messages to the device driver from programs run by the user (often automatically boot-time). This configuring also has nothing to do with PnP. Thus when talking about PnP "configuring" means only a certain type of configuring. While other documentation (such a for MS Windows) simply calls bus-resources "resources", I have coined the term "bus-resources" so as to distinguish it from the multitude of other kinds of resources.
A computer consists of a CPU/processor to do the computing and memory to store programs and data. In addition, there are a number of devices such as various kinds of disk-drives, a video card, a keyboard, network cards, modem cards, sound cards, serial and parallel ports, etc. There is also a power supply to provide electric energy, various buses on a motherboard to connect the devices to the CPU, and a case to put all this into.
In olden days most all devices had their own plug-in cards (printed circuit boards). Today, in addition to plug-in cards, many "devices" are small chips permanently mounted on the "motherboard". Cards which plug into the motherboard may contain more than one device. Memory chips are also sometimes considered to be devices but are not plug-and-play in the sense used in this HOWTO.
For the computer system to work right, each device must be under the control of its "device driver". This is software which is a part of the operating system (perhaps loaded as a module) and runs on the CPU. Device drivers are associated with "special files" in the /dev directory although they are not really files. They have names such as hda1 (first partition on hard drive a), ttyS0 (the first serial port), eth1 (the second ethernet card), etc. To make matters more complicated, the particular device driver selected, say for eth1, will depend on the type of ethernet card you have. Thus eth1 can't just be assigned to any ethernet driver. It must be assigned to a certain driver that will work for the type of ethernet card you have installed. To control a device, the CPU (under the control of the device driver) sends commands (and data) to and reads info from the various devices. In order to do this each device driver must know the address of the device it controls. Knowing such an address is equivalent to setting up a communication channel, even though the physical "channel" is actually the data bus inside the PC which is shared with almost everything else.
The communication channel is actually a little more complex than described above. An "address" is actually a range of addresses and there is a reverse part of the channel (known as interrupts) which allows devices to send an urgent "help" request to their device driver.
PC's have 3 address spaces: I/O, main memory, and configuration (only on the PCI bus). All of these 3 types of addresses share the same address bus inside the PC. But the voltage on certain dedicated wires on the PC's bus tells which "space" an address is in: I/O, main memory, or configuration. See Addresses for more details. Devices were originally located in I/O address space although today they may use space in main memory. An I/0 address is sometimes just called "I/O", "IO", "i/o" or "io". The term "I/O port" also used. There are two main steps to allocate the I/O addresses (or other bus-resources such as interrupts):
The two step process above is something like the two part problem of finding someone's house number on a street. You must obtain (and write down) the house number and someone must install a number on the front of the house so that it may be found. In computers, the device driver must obtain the address and the device hardware must get the same address set in one of its registers. Both of these must be done, but some people make the mistake of doing only one of these and then wonder why the computer can't find the device. For example, they will use "setserial" to assign an address to a serial port without realizing that this only tells the driver an address. It doesn't set the address in the serial port hardware itself. If the serial port actually had a different address (or none at all) and you told setserial wrong, then you're in trouble.
Another obvious requirement is that before the device driver can use an address it must be first set on the card. Since device drivers often start up soon after you start the computer, they sometimes try to access a card (to see if it's there, etc.) before the address has been set in the card by a PnP configuration program. Then you see an error message that they can't find the card even though it's there (but doesn't yet have an address).
What was said in the last 2 paragraphs regarding I/O addresses applies with equal force to other bus-resources: IRQs --Overview, DMA Channels, and Memory Regions. What these are will be explained in the next 3 sections.
After reading this you may read Interrupts --Details for some more details. The following is intentionally oversimplified: Besides the address, there is also an interrupt number to deal with (such as IRQ 5). It's called an IRQ (Interrupt ReQuest) number. We already mentioned above that the device driver must know the address of a card in order to be able to communicate with it. But what about communication in the opposite direction? Suppose the device needs to tell its device driver something immediately? For example, the device may have just received a lot of bytes destined for main memory and the device needs to call its driver to fetch these bytes at once and transfer them from the device's nearly full buffer into main memory.
How should the device call for help? It can't use the main data bus since it's likely already in use. Instead it puts a voltage on a dedicated interrupt wire (part of the bus) which is often reserved for that device alone. This signal is called an interrupt. There are the equivalent of 16 such wires in a PC and each wire leads (indirectly) to a certain device driver. Each wire has a unique IRQ (Interrupt ReQuest) number. The device must put its interrupt on the correct wire and the device driver must listen for the interrupt on the correct wire. Which wire it's put on is determined by the IRQ number stored in the device. This same IRQ number must be known to the device driver so that the device driver knows which IRQ line to listen to.
Once the device driver gets the interrupt (a call for help) it must find out why the interrupt was issued and take appropriate action to service the interrupt. On the ISA bus each device needs its own unique IRQ number. For the PCI bus and other special cases the sharing of IRQs is allowed.
DMA channels are only for the ISA bus. DMA stands for "Direct Memory Access". This is where a device is allowed to take over the main computer bus from the CPU and transfer bytes directly to main memory. Normally the CPU would make such a transfer in a two step process:
The PCI bus doesn't really have any DMA but instead it has something even better: bus mastering. It works something like DMA and is sometimes called DMA (for example, hard disk drives that call themselves "UltraDMA"). It allows devices to temporarily become bus masters and to transfer bytes almost like the bus master was the CPU. It doesn't use any channel numbers since the organization of the PCI bus is such that the PCI hardware knows which device is currently the bus master and which device is requesting to become a bus master. Thus there is no allocation of DMA channels for the PCI bus.
When a device on the ISA bus wants to do DMA it issues a DMA-request using dedicated DMA request wires much like an interrupt request. DMA actually could have been handled by using interrupts but this would introduce some delays so it's faster to do it by having a special type of interrupt known as a DMA-request. Like interrupts, DMA-requests are numbered so as to identify which device is making the request. This number is called a DMA-channel. Since DMA transfers all use the main bus (and only one can run at a time) they all actually use the same channel but the "DMA channel" number serves to identify who is using the "channel". Hardware registers exist on the motherboard which store the current status of each "channel". Thus in order to issue a DMA-request, the device must know its DMA-channel number which must be stored in a register on the physical device.
Some devices are assigned address space in main memory. It's often "shared memory" or "memory-mapped I/O". Sometimes it's ROM memory on the device. When discussing bus-resources it's often just called "memory". Such a device might also use I/O address space.
When you plug in such a card, you are in effect also plugging in a memory module for main memory. This memory can either be ROM (Read Only Memory) or shared memory. Shared memory is shared between the device and the CPU (running the device driver). This memory can serve as a means of direct data "transfer" between the device and main memory. It's not really a transfer since the device puts data into its own memory on its card which also happens to be in main memory. Both the card and the device driver need to know where it is. The memory address is likely to be very high so that it does not conflict with the lower addresses of the memory chips in your computer.
ROM is different. It is likely a program (perhaps a device driver) which will be used with the device. Hopefully, it may work with Linux and not just Windows ?? It may need to be shadowed which means that it is copied to your main memory chips in order to run faster. Once it's shadowed it's no longer "read only".
Thus device drivers must be "attached" in some way to the hardware they control. This is done by supplying bus-resources (I/O, Memory, IRQ's, DMA's) to both the physical device and the device driver software. For example, a serial port uses only 2 (out of 4 possible) resources: an IRQ and an I/O address. Both of these values must be supplied to the device driver and the physical device. The driver (and its device) is also given a name in the /dev directory (such as ttyS1). The address and IRQ number is stored by the physical device in registers on the card (or in a chip on the motherboard). For the case of jumpers, this info is always stored in the device hardware (on the card, etc.). But for the case of PnP, the register data is usually lost when the PC is powered down (turned off) so that the resource data must be supplied to each device anew each time the PC is powered on.
The architecture of the PC provides only a limited number of IRQ's, DMA channels, I/O address, and memory regions. If there were only several devices and they all had standardized bus-resource (such as unique I/O addresses and IRQ numbers) there would be no problem of attaching device drivers to devices. Each device would have a fixed resources which would not conflict with any other device on your computer. No two devices would have the same addresses, there would be no IRQ conflicts, etc. Each driver would be programmed with the unique addresses, IRQ, etc. hard-coded into the program. Life would be simple.
But it's not. Not only are there so many different devices today that conflicts are frequent, but one sometimes needs to have more than one of the same type of device. For example, one may want to have a few different disk-drives, a few serial ports, etc. For these reasons devices need to have some flexibility so that they can be set to whatever address, IRQ, etc. is needed to avoid conflicts. But some IRQ's and addresses are pretty standard such as the ones for the clock and keyboard. These don't need such flexibility.
Besides the problem of conflicting allocation of bus-resources, there is a problem of making a mistake in telling the device driver what the bus-resources are. For example, suppose that you enter IRQ 4 in a configuration file when the device is actually set at IRQ 5. This is another type of bus-resource allocation error.
The allocation of bus-resources, if done correctly, establishes channels of communication between physical hardware and their device drivers. For example, if a certain I/O address range (resource) is allocated to both a device driver and a piece of hardware, then this has established a one-way communication channel between them. The driver may send commands and info to the device. It's actually a little more than one-way since the driver may get information from the device by reading its registers. But the device can't initiate any communication this way. To initiate communication the device needs an IRQ in order to create a two-way communication channel where both the driver and the device can initiate communication.
External devices that connect to the serial port via a cable (such as external modems) can also be called Plug-and-Play. Since only the serial port itself needs bus-resources (an IRQ and I/O address) there are no bus-resources to allocate to such plug-in devices. Thus PnP is not really needed for them. Even so, there is a PnP specification for such external serial devices.
A PnP operating system will find such an external device and read its model number, etc. Then it may be able to find a device driver for it so that you don't have to tell an application program that you have a certain device on say /dev/ttyS1. Since you should be able to manually inform your application program (via a configuration file, etc.) what serial port the device is on (and possibly what model number it is) you should not really need this "serial port" feature of PnP.